

Abstract—Trust policy languages are implemented to express

the trust requirements of the users. These requirements are
represented by a set of rules specifying the necessary conditions
that should be fulfilled by an entity in order to gain the trust of
the evaluator. Most of the known trust policy languages are
designed to express credential, authorization and access control
requirements for the trust establishment. The credential based
approach represents only one aspect of trust. The other main
aspects like reputation and recommendation are not covered by
these policy languages. In this paper we propose a new policy
language for expressing trust requirements for reputation
models, and particularly for the KPI-based reputation model in a
supply chain scenario.

Index Terms—Trust, Reputation, Supply, Policy, Language,
KPI,

I. INTRODUCTION

Trust is a subjective matter, it depends on a truster’s
subjective evaluation of past experiences and it depends on the
characteristics of the trustee [1]. Still, for making trust usable,
we need to be able to express it in terms of measurable
quantities (trust metrics and reputation). These metrics will be
clearly not able to capture the many subjective and context
dependent facets of this complex sociological phenomenon,
but still they may be used in a specific context to assess the
reliability of the trustee and its capability to ensure privacy,
security, and so on. Nowadays, the notion of trust does not
rely only on the traditional trust infrastructure (based on
certificate verification or recommendation) but it is strongly
related to the behavior of the users and their virtual reputation.
The traditional trustworthiness models implemented in the
internet, such as Amazon or E-Bay, are relying on a subjective
rating system in which users estimate the “quality” of the
transaction over a numerical scale. Knowing that nobody is
able to formalize and explain the difference between two
successive values like a transaction rewarded at 9/10 and
another one 10/10, we cannot really estimate the correctness
and the objectivity of the trust and reputation value. In
addition, such trustworthiness models are limited in terms of
federation and adaptability; in fact it is very hard to adapt the
perception of trust in different domains and conditions. For
example the reputation of a transporter cannot be exported to
packaging and storage domain, because there is no possibility

to map the subjective trustworthiness values between two
different domains with two different trust perceptions. In order
to address the limitations above, we proposed a less subjective
trust model taking into account quantifiable parameters for the
computation of the trustworthiness value of an entity [11]. We
called these parameters KPI for Key Performance Indicators.
In the context of trust, the goal of using these metrics is to
quantify the sources of trust and adapt them to the personal
perception of each trusting entity. For example if a shipment
and a distribution company were sharing the same KPI
parameters for their reputation model, like transportation time,
package quality, quality of goods, price etc. the federation of
trust between these two domains can be handled in an easy
way by adapting the reputation calculation according to the
local perception of trust. Each trustee in the supply chain can
configure a pattern for his trust model according to his
objectives and his trust perception expressed through a formal
language, for example the trusting entity that prioritizes the
delivery time of a good, will obtain a different reputation
value than another user that prioritizes the CO2 footprint.

 In this paper, we propose a new reputation policy language
for expressing easily the personalized trust requirements
related to the KPI-based trust model. There are few languages
describing the reputation-based trust models, and in the
majority of the cases they are not designed for non-expert
users, therefore they are far from being user friendly. On the
other hand, an increasing number of people are starting to use
trust models in the supply chain industry in order to evaluate
the trustworthiness of the different nodes of the chains. Most
of the time users in that domain are not necessarily security
experts, and they encounter major obstacles in the
configuration and personalization of reputation models. For
this reason we propose here a user friendly policy language,
able to express in a very simple way the trust requirements of
a user who wants to evaluate the reputation of an entity
according to its performance parameters. The long term goal
of this language is not limited to KPI based trust model, but to
support most of the behavioral trust models.

This paper is organized as follows: in Section 2, we discuss
the related work in the domain of Trust and reputation
policies, in Section 3, we present a brief use case scenario, in
Section 4, we define the KPI-based reputation model, in
Section 5, we present the policy language specification, then
we briefly provide the implementation details, and finally we
conclude our work.

The KPI-Based Reputation Policy Language

 Slim Trabelsi Luca Boasso
 SAP Research Politecnico Di Torino
 Mougins, France Torino, Italy
 slim.trabelsi@sap.com luca.boasso@studenti.polito.it

387

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

II. RELATED WORK

In the literature, the two aspects of policy based and
reputation based management are usually separated [9]. On
one side, the policy based trust management focuses on
problems related to authorization and access control in open
systems; i.e., it determines whether or not an unknown user
can be trusted, based on a set of credentials and on a set of
policies. On the other side, reputation-based management
assesses the trust relationships based on non-certified available
information, like recommendations or previous experiences of
other users. In this paper we show how we can merge these
two approaches by providing a policy language that expresses
the trust requirements from a reputation model.

Among the existing trust policy languages we can mention
TPL (Trust Policy Language) [6] that is a XML-based
language defining the relation between unknown entities to
roles. It expresses a mechanism that allows a business to
define a policy to map accessed users to roles, based on
certificates received from the user and collected automatically
by the system. The XML nature of the language makes it
appropriate for automated processing, but less suitable for
human users. Bonatti and Samarati [5] proposed the PSPL
language to regulate service access and information release in
large scale networks. This language is designed to express
access and release policies in conjunction with a policy
filtering mechanism, which allow the parties to exchange their
requirements in a compact and privacy preserving way. PSPL
has a Prolog-like syntax, in which one can define rules that
take into account the elements of the trust model. Blaze et al.
proposed the KeyNote policy language [8] that provides a
simple notation for specifying both local security policies and
security credentials that can be sent over a non trusted
network. KeyNote policies and credentials, called
"assertions", contain predicates describing the trusted actions
permitted by the holders of specific public keys. KeyNote
assertions are small and structured programs written in a
simple notation based on C-like expressions and
attribute/value pairs actions.

All these trust policy languages do not support the
reputation models. And, to our knowledge there are very few
studies trying to address the expressivity of the reputation
requirements by a policy language like TriQL.P [10] that plans
to propose a reputation dedicated language, but up to now few
results are available from this project .

III. USE CASE

To illustrate our approach, let us consider a simple supply
chain use case. Let us consider an active transport tracking
devices attached to returnable transport items, such as crates,
rolling containers, pallets and shipping containers. Consider a
shipment of milk as it travels from the farm near Rennes in
France to a supermarket distribution center in Paris. After
collecting the milk in the farm, the farmer has to use a small
tank truck to carry his daily production to the local milk
collecting center. There the milk is packaged then assembled
to pallets and finally charged up to huge transportation trucks.

The trucks chip the bricks of milk to the supermarkets in Paris.
In order to monitor and evaluate the quality of the
transportation process from the farm to the distribution center
the supermarket quality manager will setup a KPI requirement
list in which he defines the all the quantifiable thresholds that
should be satisfied during the entire process. The metrics
chosen by the quality manager are for example the
transportation time between the farm and the local collecting
center, the average temperature, the packaging time and cost,
the transportation time between the packaging factory and the
supermarket in Paris, the average temperature during the
transportation etc. All these indicators are provided by
tamperproof sensors. The quality manager usually defines
KPIs that represent his business objectives and compute a
reputation score for each actor in the chain according to the
compliance with the requirements described above.. For
example a good temperature average should be between 3 and
4 degrees Celsius. The transportation time between Rennes
and Paris should be 5 hours (more is bad, less is good), etc.

For each delivery day the manager collects from different
sensors the indicator values and integrates it to the reputation
model in order to evaluate the score of each actor contributing
to the chain. This example is quite trivial, and any manager
can compute the score with a spreadsheet. The problem
becomes serious when in real cases, some managers have to
take into account a large number of KPIs. These performance
indicator values may be gathered through different sensors
located in different places and communicating via different
protocols (for example in a remote database, in a XML file
from a web service…). In that case the user should have a
wide range of computer skills just to collect and convert the
values in a suitable format and then to compute the reputation
values. This is not always the case. For this reason we define
in this paper a formal model to collect KPI values and
compute the final score, as well as an easily accessible policy
language that expresses these requirements.

IV. KPI-BASED TRUST MODEL

We propose a KPI-based trust Model (KPITM) [11] as an
approach in which trust evaluation is based on KPIs shared by
different users.

A. Repuation model

The KPI-based reputation model takes into account trust
metrics based on KPI. In this approach, a user can express his
trust preferences via an expressive language that specifies the
sources of the performance indicators factors and how the
factors should be combined to obtain a reputation score.
According to his business objectives, the user is able to
prioritize some indicators by setting a strong weight affecting
the result of the trust score. These indicator values are then
normalized (between 0 and 1) and then aggregated in order to
obtain a unified reputation value.

The normalization rule is written as follows:

388

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

Higher is better KPI normalization

Lower is better KPI normalization

Where Ki is the measured performance indicator valueKmin
and Kmax are the minimum and maximum values declared in
the objectives scale. If lower values are better (e.g., the
delivery time example) the value is reversed by subtracting it
from 1.

In the KPI-based model, each item has a semantic meaning
that explains the context of the measured value related to any
performance parameter (e.g., delivery time, temperature, CO2
impact, etc.). The combination of different KPI items offers
the possibility to the trustee to customize his trust evaluation
by expressing complex semantic queries.

An entity that wants to connect to a KPITM system in order
to evaluate the trust of another entity has to select three
elements: first, the KPI items that are relevant for him, second,
the location where to find the performance indicator value
and, lastly, the weights of each KPI in order to prioritize some
values during the trust evaluation. All this information must be
contained in the core query sent to the KPITM engine that will
automatically connect to the different sources, get the values
of each item and compute the trust value.

The KPI-based trust model offers the possibility to quantify
the trustworthiness according to some domain specific
objectives (how should be the conservation temperature range
for the milk) and it permits to any trustee entity to determine,
which tested element is more trustworthy according to an
objective estimation. In particular, our KPI-based trust model
allows a trustee to evaluate the weight of a recommendation
by applying the business objective scale of the recommender.
More formally, the KPI-based trust model used is composed
of three complementary layers:

• Performance Indicator Values: they are collected
from the different sources providing the values
related to the performance items

• Business Objectives Scale: it is defined by the trustee
according to the performance indicators related to
their business objectives. An interval of values (min
and max) must be chosen for every performance
indicator in order to normalize the measured value
with a [0, 1] scale. Furthermore a weight factor must
be defined to prioritize the performance indicators
and to compute the final trust value.

• Trust Level Value: it is the aggregation of all the
normalized performance indicators plus, possibly,
some external values like the recommendation from
other trusted entities.

For example in our scenario these layers are represented in
Figure 1, the weight factors are within the circles, whereas the
interval of values is represented by the double ended arrow in
the same layer.

Fig1. KPI-based Trust model of our scenario

B. Architecture

We proposed a loosely coupled architecture (Figure 2) for
managing the KPI based trust in which we have three
independent and complementary layers:

• The Indicator sources: we proposed two kinds of
interfaces in order to collect the indicator values that
should be used to compute the reputation: a database
connector used as an interface to get access to any
kind of local or remote database. A Web Service
interface for collecting the indicator values published
as Web Services

• The KPITM engine in charge of computing the
reputation value according to the trust model
described in the previous section. It interprets the
queries sent by the user via a UI or the policy
language, and then it uses the collected indicator
values to compute the reputation.

• KPI-based reputation language engine: this
component interprets the queries written in the policy
language (human readable language used to express
the reputation/trust requirements) and translates it
into a remote call to the KPITM engine in order to
calculate the reputation value.

The choice of this kind of decoupled architecture is
motivated by the requirement to have a generic solution
independent from the trust/reputation model and from the
sources of trust. In this paper, we describe a specific case,
where the trust model is based on the KPIs only, but in other

0 if Ki > Kmax

1 if Ki < Kmin

minmax

max

KK

KK i

−
−

 otherwise

1 if Ki > Kmax

0 if Ki < Kmin

minmax

min

KK

KK i

−
−

 otherwise

389

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

cases, we may use another reputation model with other
sources of trust, and we want to develop a language generic
and flexible enough to be used with a wide range of trust and
reputation models. Each layer of this architecture is
independent and replaceable.

Fig2. Architecture

V. KPI-BASED POLICY LANGUAGE

The reputation language allows a user to define queries for
the KPITM engine in a simple and concise way. No
programming knowledge is required since we propose a script
based language.

Referring to our scenario, the following code calculates the
trust value of an actor in the chain that we will cal FARMER
for example:

? example
Actors[Farmer] -> Delivery (20:30:0.8)
 -> Temperature(3:5:0.2)

According to our trust model, this query specifies the KPI
that are relevant to the manager (time and temperature), the
location of the performance values (location Actors for the
actor Farmer) and finally the range of acceptable values and
the weight for each KPI (20:30:0.8, i.e. delivery time can vary
between 20 and 30 minutes with a weight of 0.8).

A. Language Specification

A formal language is a set of sequences of symbols.
Elements of this set are called sentences. In the KPI language
sentences are programs called scripts. The symbols originate
from a finite set called the vocabulary. The set of programs
(which is infinite) is defined by rules of their composition.
Sequences of symbols that are composed by these rules are
said to be syntactically correct or well-formed. The set of rules
is the syntax of the language. The program (or sentence of the
formal language) consists of parts called syntactic entities,
such as declarations, statements or expressions.

Parentheses may be used to group factors or terms. The
notation introduced here is known as Extended Backus-Naur
Formalism (EBNF) [2].

Besides syntactic entities, denoted by identifiers, we need to
substitute elements, also called tokens, taken from the formal
language's vocabulary. The vocabulary of the KPI language
consists of identifiers, numbers, strings, operators, delimiters

and comments. They are called lexical symbols and are
composed of sequences of characters. (Note the distinction
between symbols and characters.)

In the EBNF notation non-terminal symbols are denoted by
English words expressing their intuitive meaning. Terminal
symbols are denoted by strings enclosed in quote marks.

B. Lexical Analysis

The representation of terminal symbols in terms of
characters is defined using the Latin-1 set. Terminal symbols
include identifiers, numbers, strings, operators, delimiters and
comments. Blanks and line breaks must not occur within
symbols (except in comments and blanks in strings). They are
ignored unless they are essential to separate two consecutive
symbols. Capital and lower-case letters are considered as
being distinct.The lexical rules are now considered in detail:

i. An identifier (ident) starts with an upper-case letter
followed by a sequence of zero or more letters or digit or the
special character "_":
Examples: Actors, Temperature, green_car10

ii. Numbers are of type real, a sequence of digit followed by
an optional decimal part:

real = digit {digit} ["." digit {digit}].

Examples: 3.14, 8, 6.33.
iii. A string is a sequence of characters enclosed in

quotation marks. A string cannot contain the delimiting quote
mark:

string = '"' {character} '"' | "'" {character} "'".

Examples: "This", "is 'a'", 'short "string"'.
iv. Operators and delimiters are the special characters,

character pairs or reserved words listed below. These reserved
words cannot be used as identifiers.

v. Comments start with a hash character "#" that is not part
of a string and ends at the end of the physical line.

C. Syntax and Semantic

A script begins with an optional chart declaration followed by
a sequence of statements:

script = [chart] statement {statement}.

There are two kinds of statements, assignment and query:

statement = assignment | query.

1) Assignments
An assignment allows the creation of a variable with a value

given by an expression:

assignment = "var" ident "=" expression.

expression = ["+"|"-"] term { ("+"|"-")
term}.

term = factor {("*" | "/") factor}.

factor = real | ident | "(" expression
")".

The above rules specify that an expression can use the

mathematical operators for addition, subtraction,
multiplication and division. These operators have the usual

390

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

arithmetic precedence and they are left-associative. The
parentheses are used to group expressions and they have the
highest precedence. Variables can appear freely in an
expression. For example the following assignments are correct
and all the expressions evaluate to 8:

var a = 4 + 3 * 10 / 5 - 2
var b = 4 + 3 * (10 / 5) - 2
var c = (4 + 3 * 10 / 5) - 2

2) Query
A query allows the creation of a list of KPIs:

query = "?" ident item {item}.

It starts with a question mark character followed by ident
that represents the name of the list. A KPI is defined as an
item:

item = ident "[" ident {"," ident } "]" type
{type}.

type = "->" ident "(" min_max ":" min_max ":"
weight ")".

weight = expression | "/".

min_max = expression | "MIN" | "MAX".

The above rules define the exact syntax of a KPI. Some
examples from Table 1 will make these rules clear. Consider
this script:

? Example1 Actors[Farmer] -> Delivery (20:30:1)

In order to take into account the KPI of type Delivery a
second item is added:

? Example2

Actors[Farmer] -> Delivery (20:30:0.6)
Actors[Farmer] -> Temperature(3:5::0.4)

Notice that the sum of all the weights in the list must be
always one. It is possible to add KPIs with different name,
type, location, min, max and weight; they are fully
customizable as shown in the following example:

? Example3

Actors[Farmer] -> Delivery(20:30:0.6)
Actors[Packaging] -> Delivery(40:60:0.2)
Finance[GOOG] -> Price(30:100:0.2)

In Example2 there are two KPIs with same name (Farmer)
and location (Actors). That script can be written in this
equivalent form:

? Example4

Actors[Farmer] -> Delivery(20:30:0.6)
 -> Temperature(3:5:0.4)

Let’s suppose that a company wants to evaluate the
reputation of two Actors (Farmer and Packaging) based on
their delivery time and temperature. A possible script can be:

? Example5

Actors[Farmer] -> Delivery(20:30:0.3)
 -> Temperature(3:5:0.2)
Actors[Packaging] -> Delivery(20:30:0.3)
 -> Temperature(3:5:0.2)

This last example can be rewritten also as:

? Example6

Actors[Farmer, Packaging] -> Delivery(20:30:0.6)

 ->Temperature(3:5:0.4)

In fact the four KPIs share the location (Actors) and taken
in pair they share also the type, the min, the max and the
weight (see Example5). In this way it is enough to list the
names inside the square brackets and write the shared part
only once. It is important to notice the changes in the weights:
the language will split 0.6 and 0.4 like in Example 6
automatically.

3) Automatic weight and MIN MAX keywords
Since the sum of the weights for all the items must be equal

to one, it is possible to specify only the weights of interest and
let the language to calculate the others. To achieve this result
use the "/" symbol:

? Example7

Actors[Farmer] -> Delivery(20:30:0.6)
Actors[Packaging] -> Delivery(3:5:/)
Actors[Supermarket] -> Delivery(3:5:/)

The last two items have a weight of 0.2. So the Example 5
can be rewritten again like this:

? Example8

Actors[Farmer, Packaging] -> Delivery(20:30:0.6)
 -> Temperature(3:5:/)

Sometimes can be convenient to use the keywords MIN and
MAX:

? Example9

Actors[Farmer] -> Temperature(MIN:5:0.6)
 -> Delivery(20:MAX:0.4)

The MIN will be replaced by the lowest value of type
Delivery in the Actors location. Accordingly to the table
defined before this value is 1. The same reasoning applies for
MAX, its value is 45.

As discussed before a script contains a sequence of
statements so more than one query (and so KPIs lists) can be
written:

? Farmer
Actors[Farmer] -> Delivery(20:30:0.8)
 -> Temperature(3:5:0.2)

? Packaging
Actors[Packaging] -> Delivery(20:30:0.8)
 -> Temperature(3:5:0.2)

The implementation of the language displays a list of
query's name sorted by their resulting trust value:

Farmer: 0.95
Packaging: 0.4

4) Graphical charts
In our prototype language implementation, we also support

some essential graphic function. If a script starts with a chart
declaration a graphical representation of the results will be
displayed. The chart syntax is the following:

chart = "Charts" ":" chart_desc {chart_desc}.

chart_desc = "Pie" ["{" pie_option {pie_option}
"}"] |
 "Bar" ["{" bar_option {bar_option}
"}"] .

A chart declaration starts with the keyword "Charts"
followed by ":" and a sequence of chart's descriptions
(chart_desc). A chart_desc starts with the keyword "Pie" or

391

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

tzofiya
Cross-Out

"Bar" followed by an optional sequence of options. For a pie
chart the possible options are:

pie_option = "title" "=" string |
 "legend" "=" bool |
 "tooltips" "=" bool |
 "3d" "=" bool.

While for a bar chart are:

bar_option = "title" "=" string |
 "xlabel" "=" string |
 "ylabel" "=" string |
 "horizontal" "=" bool |
 "legend" "=" bool |
 "tooltips" "=" bool |
 "3d" "=" bool.

The following example will display the same charts as
before but with a 3D effect and with other options enabled:

Charts: Pie {title = "Pie Summary" 3d = true
legend = true tooltips = true}
 Bar {title = "Bar Summary" 3d = true
xlabel = "Actors"
 ylabel = "Score" tooltips = true}

Fig3. Graphical pie and bar charts

D. Implementation Details

We implemented a syntax directed interpreter that parses
the script given as input and translate it in an internal data
structure (a list of objects). In order to execute a script this list
is further processed and finally the interpreter uses it to query
the web service to collect the results and displays them.We
used the ANTLR parser generator [3] to build the parser and
the JFreeChart library to create and display the charts[4].

VI. CONCLUSION

In this paper, we presented a new policy language for
expressing reputation requirements in the context of supply
chain scenarios. This language is now compatible with the
KPI-based trust model but can be extended to the other
reputation models. Using this new language one can easily
specify the location of input sources (sensors) of the reputation
model and configure its perception of trust. A visualization
script is also integrated to the language in order to represent
graphically the results. This language is in his initial phase and
we are currently enhancing its capabilities. The first extension
will be the support other reputation models than KPI like for
example eBay/OnSale or Sporas & Histos [12] models.

VII. ACKNOWLEDGMENT

This work is done in the context of the FP7 EU project TAS3.

REFERENCES
[1] Gambetta, D. "Can We Trust Trust?", in Trust: Making and Breaking

Cooperative Relations, Basil Blackwell, 1988
[2] Niklaus Wirth, "What can we do about the unnecessary diversity of

notation for syntactic definitions?" CACM, Vol. 20, Issue 11, November
1977, pp. 822–823.

[3] http://www.antlr.org/
[4] http://www.jfree.org/jfreechart/
[5] P. Bonatti and P. Samarati, “Regulating Service Access and Information

Release on the Web,” 7th ACM Conference on Computer and
Communications Security, Athens, Greece, November 2000.

[6] A. Herzberg, Mihaeli, Y. Mass, D. Naor, and Y. Ravid,“Access Control
Meets Public Key Infrastructure, Or:Assigning Roles to Strangers,”
IEEE Symposium on Security and Privacy, Oakland, CA, May 2000.

[7] E. Bertino, S. Castano, and E. Ferrari, “On Specifying Security Policies
for Web Documents with an XML-based Language,” Sixth ACM
SACMAT, Chantilly, Virginia, May 2001.

[8] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The KeyNote
Trust-Management System,” RFC 2704,September 1999.

[9] P. Bonatti , C. Duma , D. Olmedilla , and N. Shahmehri, “An
Integration of Reputation-based and Policy-based Trust Management” In
proceedings of the Semantic Web Policy Workshop (in conjunction with
4th International Semantic Web Conference), Galway, Ireland,
November 2005

[10] C. Bizer, R. Cyganiak, O. Maresch and T. Gauss, “TriQL.P - Trust
Architecture” http://www4.wiwiss.fu-berlin.de/bizer/triqlp/

[11] K. Bohm, S. Etalle, J. den Hartog, C. Hutter., S.Trabelsi, D. Trivellato,
and N. Zannone, “A Flexible Architecture for Privacy-Aware Trust
Management” Journal of Theoretical and Applied Electronic Commerce
Research ISSN 0718–1876 Electronic Version VOL 5 / ISSUE 2 /
AUGUST 2010 / pp. 77-96

[12] Zacharia, G. and Maes, P., “Trust Management through Reputation
Mechanisms”, Applied Artificial Intelligence 14 (2000) pp. 881–907.

392

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

