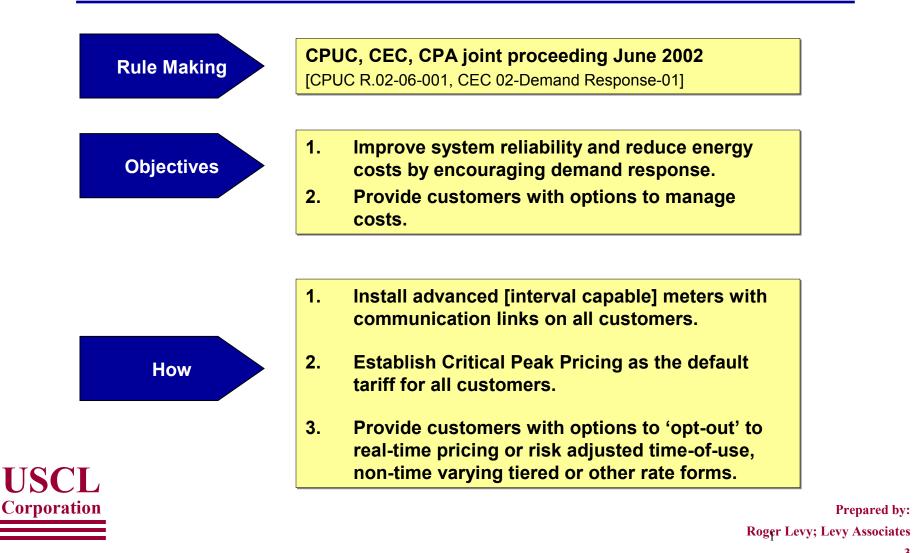
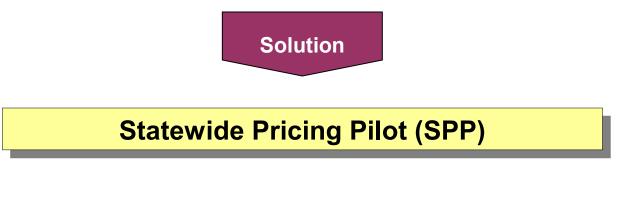
California SPP Results <u>Initiative on Demand Pricing and Critical Peak Pricing</u> July 2004



Results From the California State Pricing Pilot (SPP) Generally Show:

- •Residential and Commercial / Industrial customers don't understand their current rates.
- •Both groups overwhelmingly prefer the Critical Peak rates to their existing rates.
- •Both groups respond to these rates with substantial peak load reductions
- •Both groups respond to these rates with reduced overall energy use.
- •A majority (roughly 80%) of all customers will see reduced monthly energy bills on the Critical Peak rates. Those that don't are being charged for their peak load.

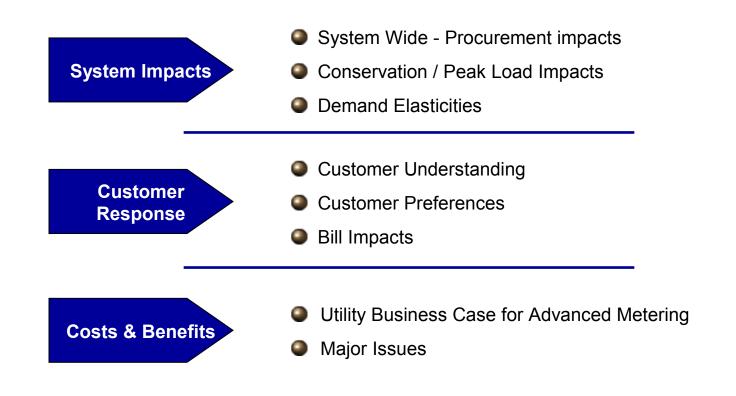


California Vision

Problems

- 1. California utilities concerned that prior 25 years of pricing and demand response research not applicable.
- 2. California utilities need up-to-date demand elasticities to estimate system resource and procurement impacts.
- 3. The cost to implement advanced metering system wide requires a complete and thorough business case evaluation.

Corporation


SPP Conclusions

- 1. Rates that reflect market price (Critical Peak Pricing), produce greater conservation and demand response impacts than TOU or inverted tier rate forms.
- 2. Residential and commercial/industrial customers with demands less than 200kW demonstrate substantial, statistically significant response to critical peak pricing.
- 3. Critical Peak rates will produce short-run residential peak demand reductions of 2,000 MW or more, energy conservation of up to 7% and even greater impacts in the long-term. At \$85 per kW-year, these savings equal \$3-\$4 per customer per month.
- 4. Customers understand and respond favorably to Critical Peak rates.
- 5. At least 50% of residential customers will receive a lower energy bill under Critical Peak Pricing without any change in usage. Another 20% to 30% of residential customers will receive a lower energy bill under Critical Peak Pricing with only minor changes in usage.

6. The net investment to implement the advanced metering infrastructure to support Critical Peak Pricing should result in incremental residential charges substantially less than \$1.00 per meter per month.

California Vision – The Results

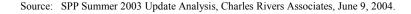
System Impacts

Corporation

SPP Conclusions

System Wide Procurement Impacts	CPP rates can, within five years of deployment reduce the California's residential peak load by 2,000 to 2,400 MW.	Confidence in Conclusion High Moderate Low	Need for Further Tests None Useful Essential
Conservation and Peak Load Impacts	CPP-V rates encourage greater conservation and peak demand impacts than conventional inverted tier, TOU or CPP-F rates.	High Moderate	None Useful Essential
Demand Elasticities	. SPP short-run own-price demand elasticities are consistent with 25 years of historical findings in California and elsewhere.	High Moderate Low	None Useful Essential
2	. Historical long-run own-price demand elasticities are typically about double short-run elasticities.	High Moderate Low	None None Useful Essential
JSCL			

California Vision – The Results


RESIDENTIAL CUSTOMERS



SPP Conclusions

- 1. Customers show significant response to both the CPP-F and CPP-V rates
- 2. Impacts are higher in the hotter zones for both CPP and non CPP days
- 3. Responses are substantially higher on CPP days than on non-CPP days
- 4. For all zones, the CPP day impact is -12% and the non-CPP day impact is -2.3%
- 5. CPP day impacts differ slightly between the two experimental rates within the CPP-F rate
- 6. Results are generally similar across the two functional forms tested in this study
- 7. Customers do not respond to TOU rates

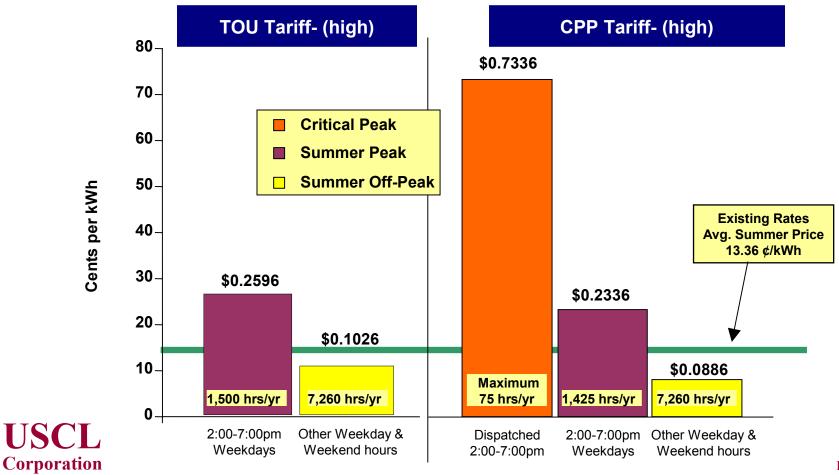
Customer Response to Price

What Have We Learned ?

Historical Findings	SPP Findings
Residential customer elasticities were higher than those for commercial customers.	Confirmed.
Residential customer elasticities were typically higher for customers with higher usage, more appliances, and air conditioning load.	Confirmed.
Price response was typically significantly higher – approximately double – when automated control capability was available.	Confirmed.
Customers typically reduced total consumption by around three percent, with the range from zero percent to as high as 23 percent.	Confirmed.
Customers reduced peak demands by a four percent (low end of time-of-use range) to 59 percent (high end of critical peak pricing range).	Confirmed.
Commercial customer elasticities varied widely by business type.	Confirmed.

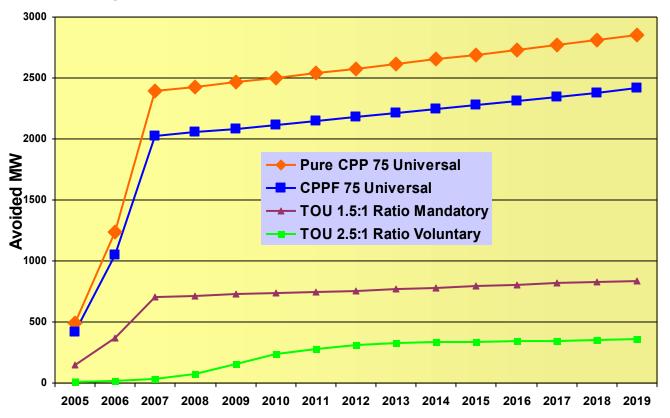
Source:

Proposed Pilot Projects and Market Research to Assess the Potential for Deployment of Dynamic Tariffs for Residential and Small Commercial Customers, Report of Working Group 3 to Working Group 1, R.02-06-001, Final Version 5, December 10, 2002, p25.


Residential Price For Consumers At Midpoint of Tier 3

SPP Residential Rate Forms

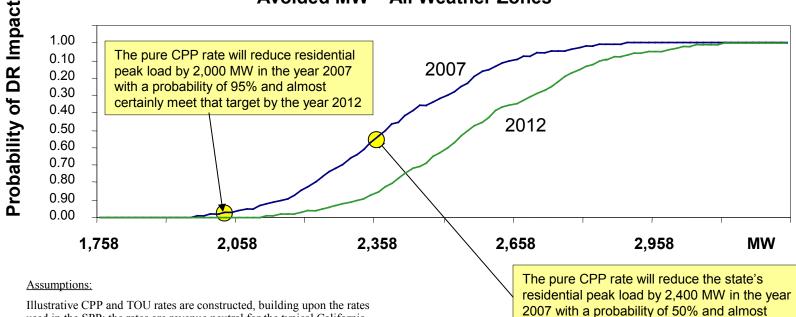
(Example TOU & CPP High Options)


Prepared by: Roger Levy; Levy Associates

RESIDENTIAL

SPP Residential Rate Options

System Wide Potential Peak Demand Impacts


Source: Charles Rivers Working Group 3 presentation, March 30, 2004.

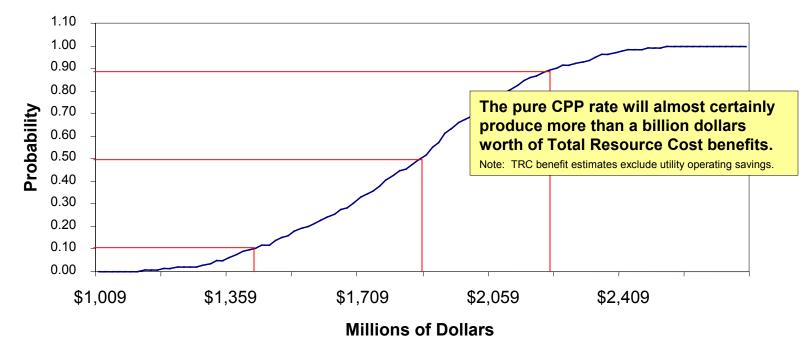
certainly meet that target by the year 2012

Probabilistic System Wide CPP Residential Potential Peak Demand Impacts

Avoided MW – All Weather Zones

Illustrative CPP and TOU rates are constructed, building upon the rates used in the SPP; the rates are revenue neutral for the typical California investor-owned utility residence

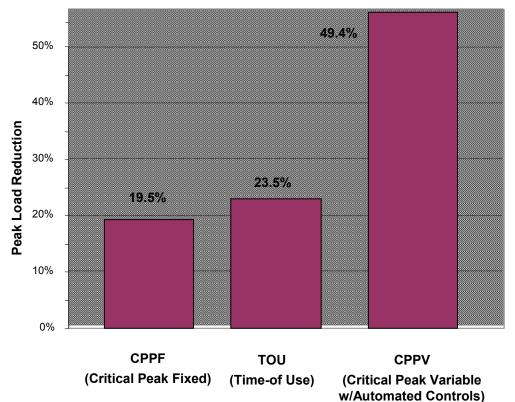
Marginal capacity cost of 85/kW-year are used in the analysis, along with energy costs of $15 \notin /kWh$ in the CPP period, $4.7 \notin /kWh$ in the peak period, and $4.0 \notin /kWh$ in the off peak period.



Source: Charles Rivers Working Group 3 presentation, March 30, 2004.

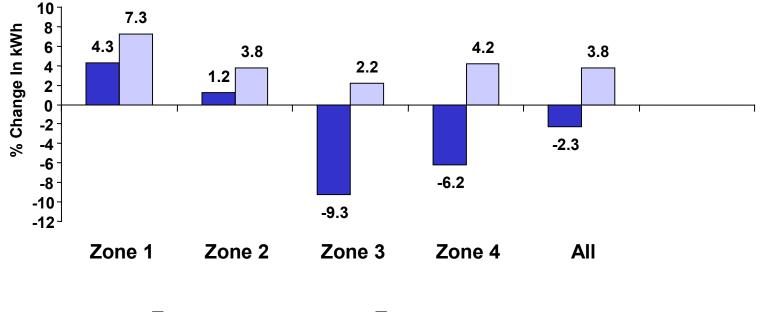
System Wide Pricing Impacts Demand Response Dollar Value of Impacts

TRC NPV Benefits – All Zones


Source: Charles Rivers Working Group 3 presentation, March 30, 2004.

Residential Coincident Critical Peak Demand Impacts

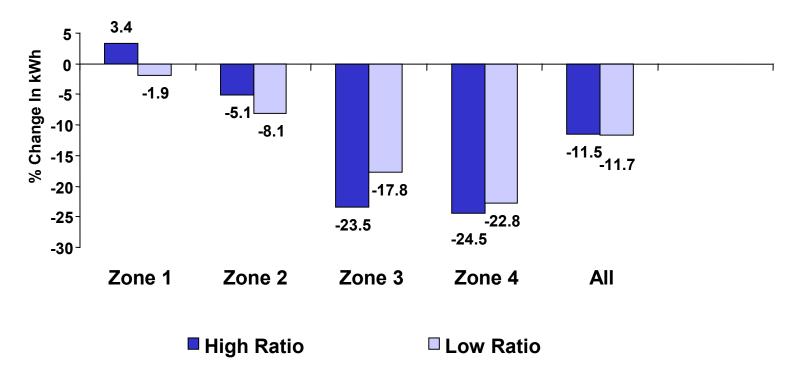
By SPP Rate Treatment



Source: Statewide Pricing Pilot Summer 2003 Impact Analysis, Charles Rivers Associates, March 9, 2004.

Percent Change In Energy Use By Rate Period For Average Experimental Prices On Non-CPP Days

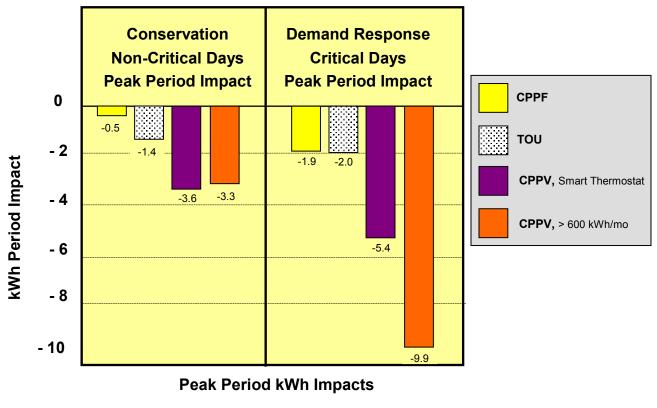
Peak Period
Off-Peak Period


USCL Corporation

Source: SPP Summer 2003 Update Analysis, Charles Rivers Associates, June 9, 2004.

Percent Change In Energy Use During

The Peak Period On CPP Days By Price Ratio



Source: SPP Summer 2003 Update Analysis, Charles Rivers Associates, June 9, 2004.

Conservation vs. Peak Period Impacts

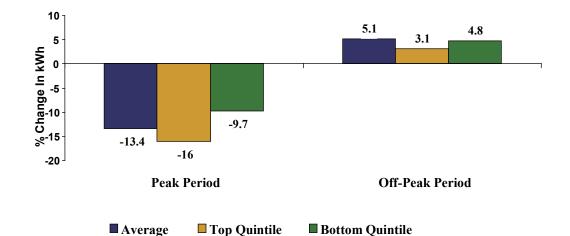
By SPP Rate Form

(Example: Weather Zone 3)

Source: Statewide Pricing Pilot Summer 2003 Impact Analysis, Charles Rivers Associates, March 9, 2004.

SPP Impacts on Peak Consumption and Coincident Peak Demand

	Percent Change in Peak Consumption		Change in C Peak De	
Rate Form	Non-CPP Days	CPP Days	kWh	Percent
Time-of-Use	-16.0	-16.0	-0.3	-23.5
CPP – Fixed	-9.4	-22.0	-0.2	-19.5
CPP - Variable	-28.0	-38.8	-1.4	-49.4

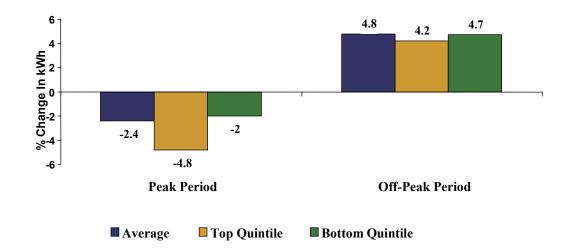

Source: Statewide Pricing Pilot, Summer 2003 Impact Analysis, Charles Rivers Associates, January 16, 2004, Tables 1-1 and 1-2.

Weather Related Impacts Load Impacts CPP Days

(Percentage Change in Usage)

Interpreting This graph:

As seen, the percent reduction in peak-period energy use on CPP days based on average weather for the treatment period is 13.4 percent. Based on weather conditions representing the top 20 percent of CPP days (as measured by system load conditions), the percent reduction is -16 percent, whereas the reduction falls to 9.7 percent on the cooler, lowest system-load days.



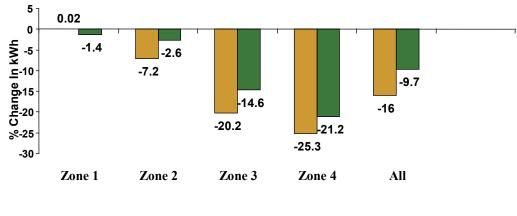
Source: Charles Rivers Associates Analysis memo, June 24, 2004.

Weather Related Impacts Load Impacts Non-CPP Days

(Percentage Change in Usage)

Interpreting This graph:

On non-CPP days, the percent reduction in peak-period energy use is 4.8 percent based on weather conditions representing high-load days and 2 percent on low-load days.


Source: Charles Rivers Associates Analysis memo, June 24, 2004.

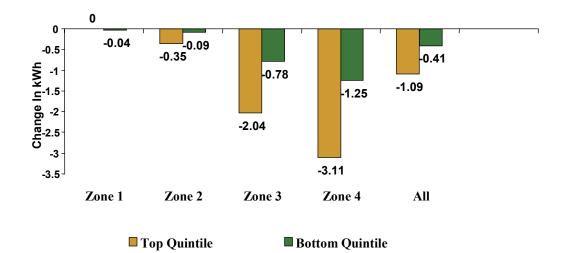
Weather Related Impacts Load Impacts By Weather Zone on CPP Days

(Percentage Change in Usage)

Top Quintile Bottom Quintile

Interpreting This graph:

This graph shows the variation in percentage impacts across climate zones for peak-period energy use on CPP days. The percent impact is clearly much larger in the hotter climate zones than in the cooler zones. However, the change in the percentage impact between the top and bottom quintile load days is greater in zone 2 than it is in zones 3 and 4.


Source: Charles Rivers Associates Analysis memo, June 24, 2004.

Weather Related Impacts Load Impacts By Weather Zone on CPP Days

(Change in Actual kWh)

Interpreting This graph:

Corporation

This graph shows the absolute impact, in kilowatt-hours, resulting from the SPP prices by climate zone and for the state as a whole. Clearly, the difference in the absolute impact on high-load and low-load days is much larger than the difference in percentage impacts, as customers in the hotter zones are both more responsive high-load days and larger energy users. When these two factors are combined, the impact on high load days in zone 2 is nearly four times higher than on low-load days. In zones 3 and 4, the impact is roughly 2½ times higher on high-load days than on low-load days. Statewide, the impact is roughly 2.7 times higher on high-load days than on low-load days. It is also worth noting that the absolute impact on high-load days in the hottest zone 4 is almost nine times greater than the impact in the moderate zone 2.

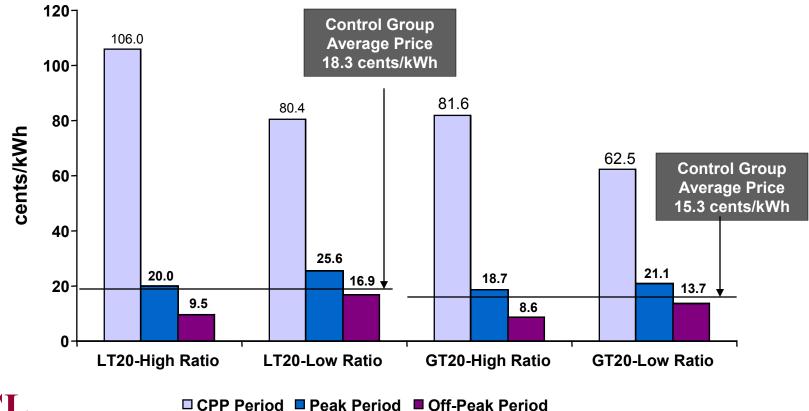
Source: Charles Rivers Associates Analysis memo, June 24, 2004.

California Vision – The Results

COMMERCIAL / INDUSTRIAL CUSTOMERS

SPP Commercial / Industrial Rate Forms (TOU & CPP High Options)

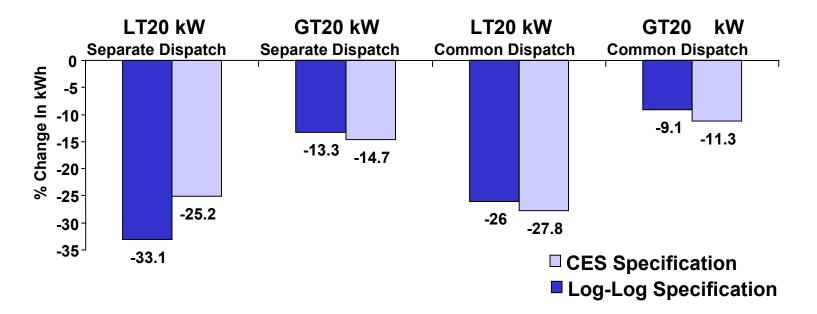
	Average Pri	ces For C&I Cu	istomers During	Treatment Perio	od (\$/kWh)	
Customer Rate Segment Treatment	Price Ratio	Non-CPP Day		CPP-Day		
		Peak Period	Off-Peak Period	Peak Period	Off-Peak Period	
LT20	Control	n/a	0.186		0.186	
	TOU	High	0.272	0.094	0.272	0.094
		Low	0.325	0.159	0.325	0.159
	CPP-V	High	0.200	0.095	1.07	0.091
		Low	0.256	0.169	0.813	0.166
GT20	Control	n/a	0.154		0.	154
	TOU	High	0.224	0.100	0.224	0.100
		Low	0.254	0.144	0.254	0.144
	CPP-V	High	0.187	0.086	0.820	0.084
		Low	0.212	0.137	0.629	0.136



Source: SPP Summer 2003 Update Analysis, Charles Rivers Associates, June 9, 2004.

Price For Typical C&I Customer On CPP-V Rate

(Weighted Average For Treatment Customers)

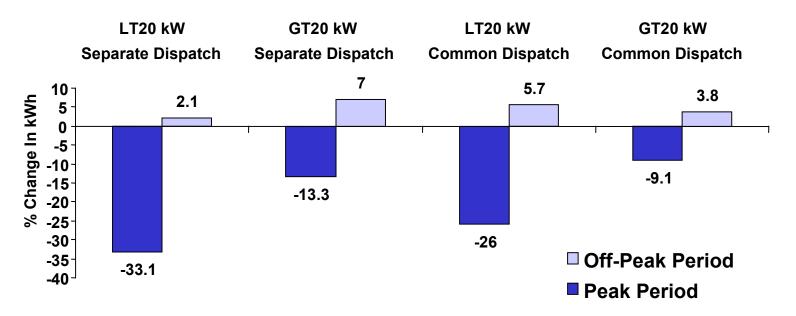

Source: SPP Summer 2003 Update Analysis, Charles Rivers Associates, June 9, 2004.

Corporation

Percent Change In Energy During Peak Period

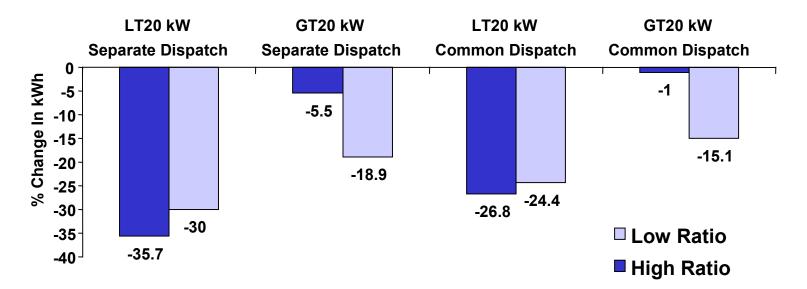
(Average Experimental Prices On CPP Days)

* Estimates for the CPP-V tariff may not represent the impacts of the general population of customers


Source: SPP Summer 2003 Update Analysis, Charles Rivers Associates, June 9, 2004.

Percent Change In Energy Use By Rate Period For Average Experimental Prices On CPP Days

(Based on Log-Log Model)


* Estimates for the CPP-V tariff may not represent the impacts of the general population of customers

Source: SPP Summer 2003 Update Analysis, Charles Rivers Associates, June 9, 2004.

Percent Change In Energy Use During Peak Periods On CPP Days By Price Ratio

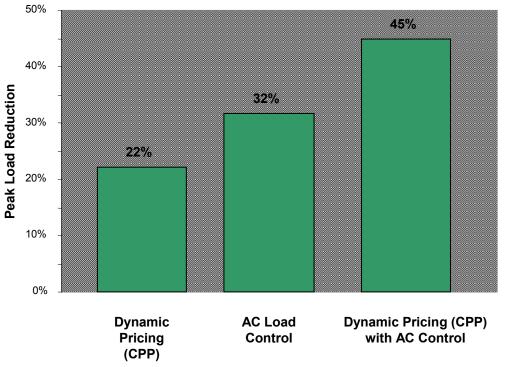
(Based on Log-Log Model)

* Estimates for the CPP-V tariff may not represent the impacts of the general population of customers

Source: SPP Summer 2003 Update Analysis, Charles Rivers Associates, June 9, 2004.

California Vision – The Results

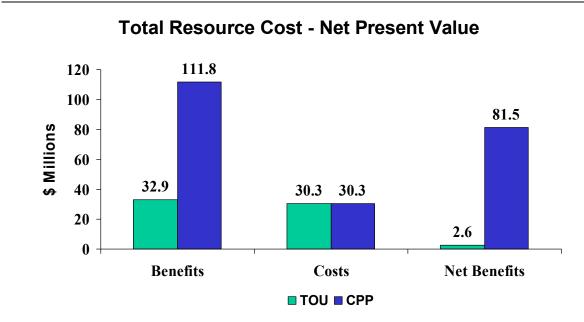
INDUSTRY WIDE EXPERIENCE


Prepared by: Roger Levy; Levy Associates

31

Industry Experience

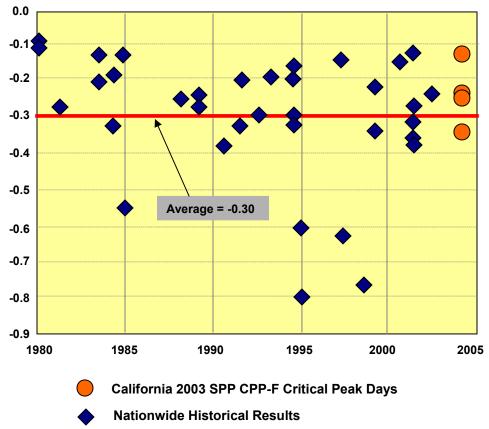
Comparison of Pricing Only, Load Control Only and Combined Programs



Source: ISSUES IN DEMAND RESPONSE, Combining Residential Dynamic Pricing and Load Control: The Literature Chris King, December 2003

Cost Effectiveness CPP Rates Dominate TOU Rates

Source: [Northern State Power Case Study]


Creating Value Through Dynamic Pricing in Mass Markets, Peak Load Management Alliance Fall Conference, Annapolis, Maryland, Ahmad Faruqui and Steve George, Charles River Associates, October 8, 2002

Own-Price Elasticities

California SPP vs. Nationwide Historical Results

Source: Predicting California Demand Response, Chris King and Sanjoy Chatterjee, Public Utilities Fortnightly, July 1, 2003, p.27-32.

Own-Price Elasticity of Demand SPP Compared to Historical Industry Results

Statewide Pricing Pilot (SPP) Own-Price Elasticity Results

Climate Zone	CPP-F CPP Days*	CPP-F Non-CPP Days	TOU All Weekdays
Zone 1	-0.14	-0.21	+0.03
Zone 2	-0.24	-0.26	-0.13
Zone 3	-0.34	-0.50	-0.59
Zone 4	-0.25	-0.25	-0.27

Source: Charles Rivers Associates, SPP Summer 2003 Impact Analysis, January 27, 2004.

Historical Studies Own-Price Elasticity Results

Climate Zone	Short-Run Elasticity¹	Long-Run Elasticity
Low	-0.12	-0.60
Medium	-0.20	-0.90
High	-0.35	-1.20

1. Short-run – customers make no change in appliance holdings.

Source: Predicting California Demand Response, Chris King and Sanjoy Chatterjee, Public Utilities Fortnightly, July 1, 2003, p.27-32.

There Is Ample Evidence That US Customers Respond To Dynamic Pricing Rates

- A variety of experiments, quasi-experiments and demonstration programs have been conducted during the past quarter century to assess customer response to innovative pricing options.
- On average, if the on-peak price is doubled, on-peak usage drops by 20%. The drop in usage varies based on factors such as appliance ownership and climate.
- Puget Sound Energy has shown that if the on-peak price is raised about 15%, on-peak usage drops by 5%.
- Salt River Project has shown that coincident peak demand drops by 28% if the on-peak energy price is doubled.
- GPU has shown that enabling technologies can double the magnitude of customer response.

Source:

Creating Value Through Dynamic Pricing in Mass Markets, Peak Load Management Alliance Fall Conference, Annapolis, Maryland, Ahmad Faruqui and Steve George, Charles River Associates, October 8, 2002

Customer Demand Response Estimates

Program Type	Program Type Range of Elasticities		Range of Total Usage Reduction	
Residential time-of-use	-0.05 to -1.3 (SCE; North Carolina)	4% to 35% (Ontario; Duke)	0% to 23% (PG&E Connecticut)	
Residential critical peak pricing	-0.35 to -0.82 (GPU; EdF France)	42% to 59% (Gulf Power; AEP)	0% to 6.5% (AEP; Gulf Power)	
Small commercial time- of-use	-0.03 to -0.04 (SCE; PG&E)	SPP Results in Process	2.1% to 5% (McKinsey multi-utility data; Finland)	
Small commercial dynamic pricing	No studies	SPP Results in Process	SPP Results in Process	

Source:

Proposed Pilot Projects and Market Research to Assess the Potential for Deployment of Dynamic Tariffs for Residential and Small Commercial Customers, Report of Working Group 3 to Working Group 1, R.02-06-001, Final Version 5, December 10, 2002, Table 2-2.

California Vision – The Results

CUSTOMER KNOWLEDGE,

PREFERENCES and **BILL IMPACTS**

SPP Conclusions

Confidence in

Need for

Customer Response

Conclusion **Further Tests** 1. Customers do not understand the Results relationship between how they use High None Customer SPP energy and what they pay. Knowledge Moderate Useful 2. Customers understand and accept the Low Essential concept of time-differentiated pricing. 1. Customers resist change due to Results High None uncertainty regarding their present usage Customer SPP and billing situation. Moderate Useful **Preferences** 2. Residential and business customers Low Essential support rates that match price with electricity demand. 1. Low and moderate use residential High None customers will receive reduced energy Results bills under a CPP rate without any change SPP Moderate Useful **Bill Impacts** to their usage pattern because they Low Essential already use less on-peak energy. 2. CPP rates will provide all customers with a clear option for managing their energy USCL cost. Corporation

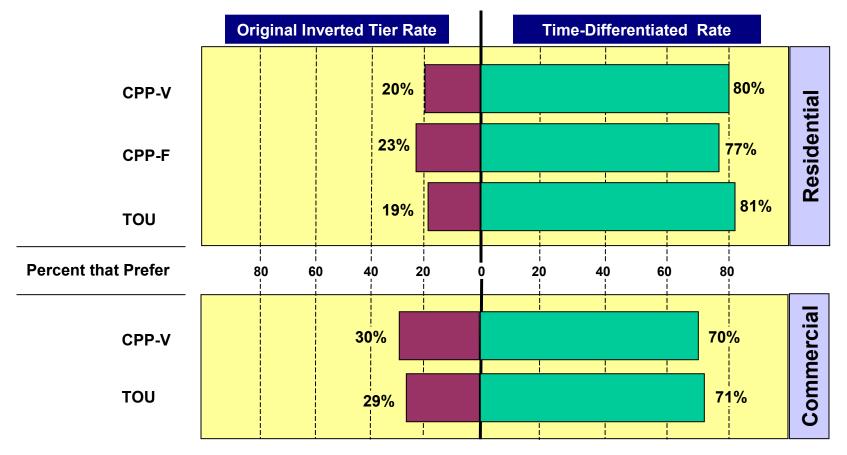
Conventional vs. Time-Differentiated Pricing

"...most respondents could easily understand the logic of time-differentiated electricity prices,.."

"..customers understood time-differentiated pricing (at least the on-peak / off-peak variety) more easily than they understood the notion of inclining block [tiered] or declining block pricing."

Source: 1- Residential Customer Understanding of Electricity Usage and Billing, Momentum Market Intelligence, WG3 Report, January 29, 2004.p16.

Customer Knowledge Findings


	Results from the SPP ¹	What it means ²
•	Customers don't understand how electricity use is measured.	Lack of meaningful feedback on usage and usage pattern.
•	Customers don't understand how electricity is priced.	Complicated rates mask the time and/or volume vs. cost relationship.
•	There is an uncertain and inaccurate link between how customers use energy, what they pay and what they get in service value.	The inability to clearly link cost with value contributes to improper / inefficient usage and impedes better investment decisions.
•	Bill accuracy – customer's must trust their supplier. No other choice.	Creates a fragile, tenuous relationship.

Source: 1- Residential Customer Understanding of Electricity Usage and Billing, Momentum Market Intelligence, WG3 Report, January 29, 2004.pviii-ix. 2 – CEC interpretation.

SPP Customer Rate Preference

Source: SPP End-of-Summer Survey Report, Momentum Market Intelligence, WG3 Report, January 21, 2004, p23-24.

Customer Resistance to Change

Justification for a Revised Default Tariff

"Having to change plans, however, is not viewed as a good thing but rather as a necessary step when a given plan turns out to not work as well as had been anticipated."

2

"The implication for electricity pricing plans is to recognize that customers do not tend to adopt such plans with the notion that they are willing to 'trial' options and 'see how they work out'."

...several participants claimed to be on a TOU rate, derived from the "Flex Your Power" advertising campaign. They were delaying some electric usage until evenings and weekends – they believed they were paying less for electricity during those times.

Average Bill Impacts

Residential and Commercial / Industrial Savings

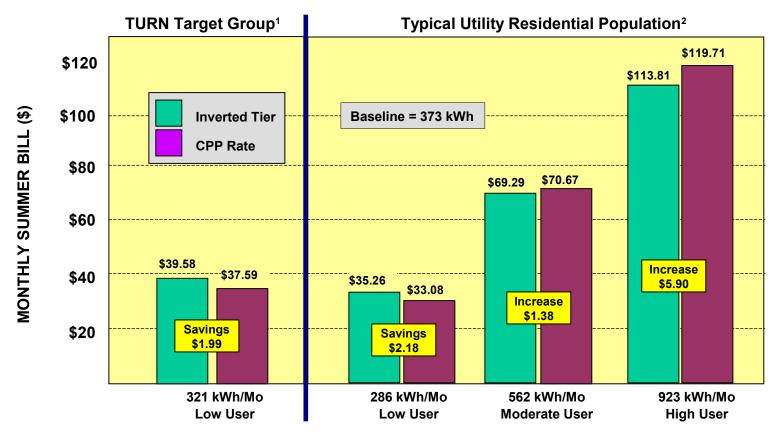
(summer / winter 2003)

		Residential				Commercial / Industrial	
		CPPV	CPPF	του	Info Only	CPPV	του
Bill Savings	Participants (%)	71.1%	73.7%	70.0%	79.0%	80.3%	58.2%
	Average Monthly Savings (%)	5.1%	5.5%	4.5%	5.4%	12.2%	9.6%
	Average Monthly Savings (\$)	\$53	\$35	\$29	\$19	<mark>\$1,521</mark>	\$869
Bill	Participants (%)	28.9%	26.3%	30.0%	21.0%	19.7%	41.8%
Increases	Average Monthly Increase (%)	4.0%	6.2%	3.0%	10.0%	5.0%	10.0%
	Average Monthly Increase (\$)	\$39	\$44	\$30	\$9	\$224	\$600

SPP Results

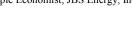
Bill Impacts

Source: Statewide Pricing Pilot, Shadow Bill Results, WG3 report, June 9, 2004.


USCL

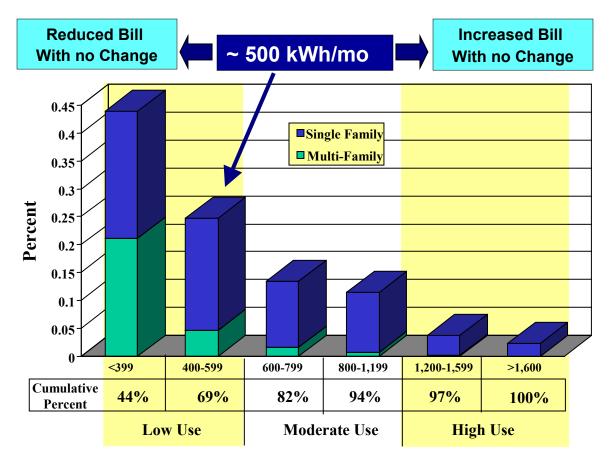
Corporation

Potential Impacts from Systemwide Implementation


Existing Inverted Tier vs. SPP CPP Rate (Summer)

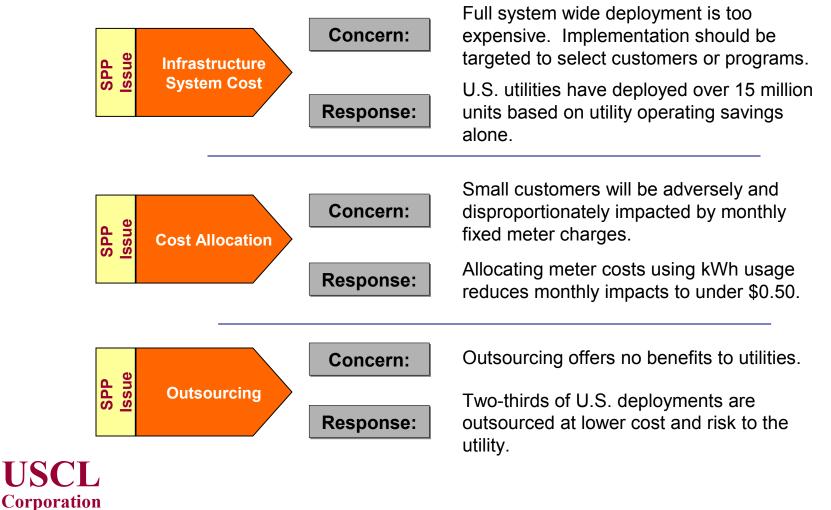
(Assumes no customer response)

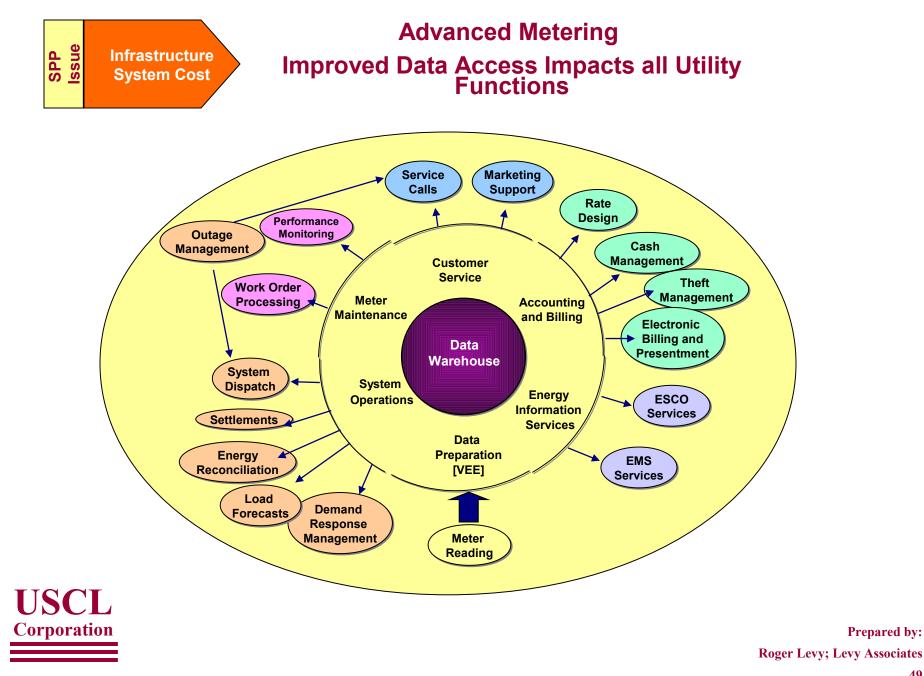
1. <u>Target Population identified: Financial Externalities and "Peak Hogs": New</u> <u>Consideration for Energy Efficiency and Rate Design Policy</u>, by William B. Marcus, Principle Economist, JBS Energy, Inc., March 2001.


2. <u>Target Population identified from PG&E SPP rate design</u> exercise.

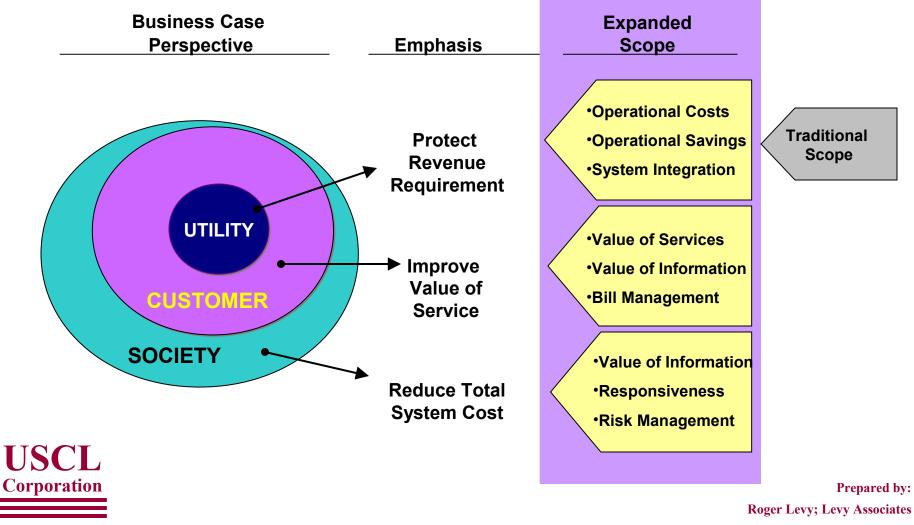
Customer Bill Impacts

Typical Utility Residential Population by Average Monthly Electric Usage


California Vision – The Results

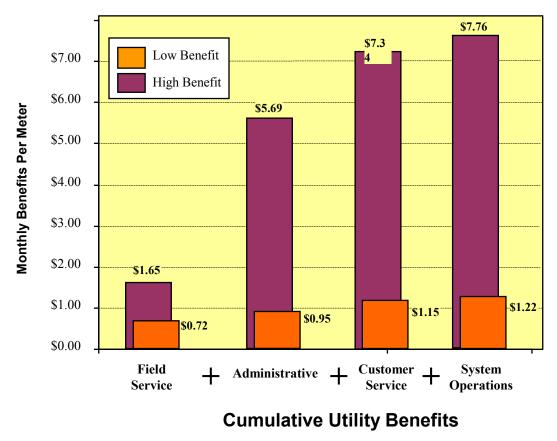

Cost Benefit Issues

Advanced Metering


Costs & Benefits

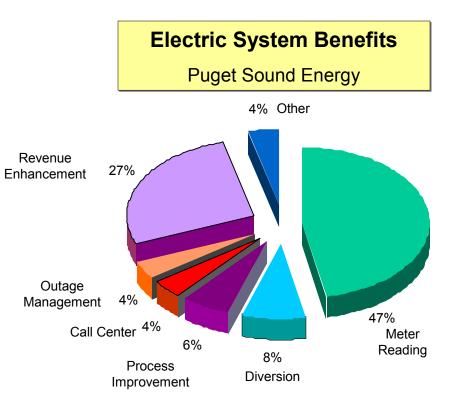
Advanced Metering Establishing the Business Case

Meter System Costs (Example)


	Residential	Commercial Industrial
Solid State Meter and communication module	\$45-\$75	\$50-\$800
Installation Cost	\$5-\$150	\$10-\$300
Information and Communication Systems *	\$10-\$40	\$10-\$40
Total \$ Cost per Meter	\$85-\$265	\$90-\$1,000
Per Customer / Month Incremental Cost	\$1.00 to \$1.50 per meter	
Today's Metering Cost	\$2.50 - \$3.50 / meter / month	

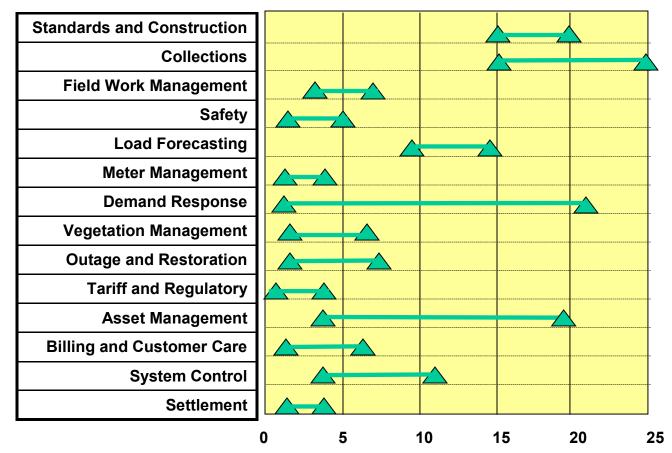
Source: WG3, industry presentation, 2003.

Advanced Metering - Utility Benefits



Source: "Capturing the Value: The Future of Advanced Metering and Energy Information", Cambridge Energy Research Associates (CERA), Final Report, Spring 1999, Chapter VI, Figure VI-6 (Levy Associates Working papers).

Industry Experience


Source: California Experiential Workshop, Presentation by Puget Sound Energy, Brian Pollom and Todd Starnes, September 10, 2002.

Advanced Metering - System Benefits

Reported Percentage Reduction in System Costs

Source: "Distribution Technology Roadmap", Report for the Canadian Electrical Association & Consortium, by Cap Gemini Ernst & Young, U.S. LLC, 2003.

Advanced Metering

Full vs. Targeted Deployment – Impact on Benefits

(Example)

В	Improved Utility Operations	Targeted Implementation	System-Wide Implementation
1	Reduce System Meter Reading Costs	NO	YES
2	Improve Billing Information, Reduce Estimated Bills	LIMITED	YES
3	Improve Financial Management	NO	YES
4	Reduce / Improve Call Center Operation	NO	YES
5	Reduce Diversion and Theft	LIMITED	YES
6	Improve System Outage Response	NO	YES
7	Better Information for Planning, Forecasting & Evaluation	LIMITED	YES
8	Better Information for T&D Planning / Management	LIMITED	YES
9	Expanded Demand Response Planning and Evaluation	LIMITED	YES

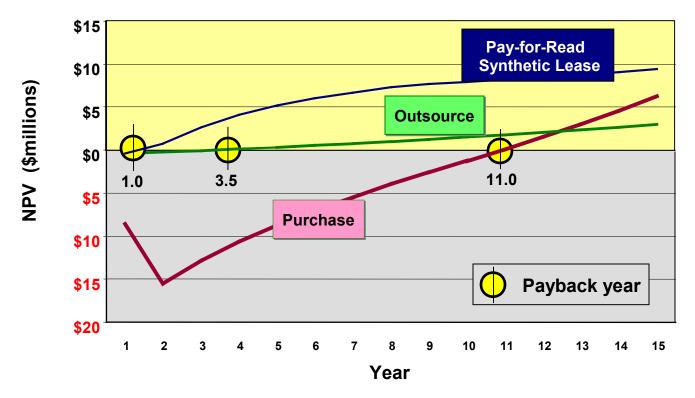
Advanced Metering - Cost Allocation

PROBLEM

Fixed meter charges disproportionately impact low use customer bills.

kWh based volumetric cost allocation method.

Total Cost Per Residential Meter	Option #1. Fixed Charge \$ / Meter / Month	Option #2. Volumetric Charge \$ / Meter / Month
\$85 - \$265	\$1.05 - \$2.25	Monthly Usage ChargeMonthly Charge0 - 300 kWh\$0.33301 - 500 kWh\$0.56501 - 1,000 kWh\$1.12> 1,000 kWh\$1.67



USCL

Corporation

Meter System Economics

Source: Private communication between Levy Associates and Invensys, background data for a utility highlighted at the Distributech 2001 Utility Conference.

- 1. Regulatory Process
- 2. Legislation
- 3. Settlement
- 4. Policy Decision

