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1.  Introduction

Particle, momentum, and heat transport in the tokamak core is 
dominated by turbulence driven by plasma microinstabilities 
[1, 2]. An accurate predictive model for turbulent transport 
fluxes is thus vital for the interpretation and optimization of 
present-day experiments, and extrapolation to and control of 
future machines.

Direct numerical simulation with massively parallel non-
linear gyrokinetic codes has provided tremendous insight to 
the underlying transport physics and success in reproducing 

experimental fluxes in many regimes. However, the computa-
tional cost—typically 105CPU hours for a local flux calcula-
tion at a single radial point—precludes the routine use of such 
codes for integrated tokamak transport simulations which 
demand ∼103 flux computations per 1 s of plasma evolution 
on JET scale devices.

Reduced turbulent transport models have been constructed 
to increase tractability. They are based on the quasilinear 
approximation, which is proven to be largely valid in the core 
of tokamak plasmas [3–5]. These rely on nonlinear simula-
tions for validating their ansatzes and normalizing factors. 
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These models have proven successful in reproducing experi-
mental profiles in many cases. Examples are TGLF [6] and 
QuaLiKiz [7]. A ∼6 orders of magnitude speedup is gained 
in quasilinear calculations compared to nonlinear simulations. 
However, while extremely useful, the tractability of such 
models is still marginal for convenient large-scale scenario 
development over discharge timescales. For example, 1 s of 
JET plasma evolution can take up to 24 h with 20 processors, 
depending on the integrated modelling platform used. This 
speed is also insufficient for applications such as trajectory 
optimization, and simulations for developing real-time con-
trollers. Furthermore, any increase in physics fidelity in the 
models often results in a trade off with further decrease in 
tractability.

This Letter illustrates an approach to overcome these 
challenges. The central point is to relegate the expensive 
flux calculations to a stage precedent to its use in a trans-
port simulation. Instead, analytical formulae are to be used 
in the simulation, based on a neural network (NN) nonlin-
ear regression of quasilinear fluxes previously compiled in a 
database. The advantage is twofold: (1) the numerical resolu-
tion of analytical formulae is orders of magnitude faster than 
original flux calculation; (2) the computation time required 
for compiling the database is independent from the computa-
tion time spent during the tokamak simulation itself, hence 
the training set for NN regression can include results from 
more complete codes than used in contemporary integrated 
transport modelling.

Neural networks have found multiple applications in 
tokamak research, including: nonlinear regression for energy 
confinement scaling [8]; neoclassical transport [9]; rapid 
determination of equilibria [10], electron temperature profiles 
[11], and charge exchange spectra [12]; classification of dis-
ruption [13–15] and L-H transition onsets [16]. Most related 
to this work is a regression of DIII-D heat fluxes from experi-
mental power balance databases [17].

2.  Quasilinear transport model and training set

The QuaLiKiz quasilinear gyrokinetic transport model [5, 7, 
18–20] was employed in this work. QuaLiKiz solves a linear 
gyrokinetic dispersion relation for calculating wavenumber 
spectra of instability growth rates and frequencies. Then, inte-
grating over the spectra, the transport fluxes are calculated via 
quasilinear flux integrals and nonlinear saturation rules. The 
bulk of the computational time is spent in the first stage, the 
dispersion relation solver. QuaLiKiz has been coupled to the 
CRONOS [21] integrated modelling suite, and has success-
fully reproduced temperature and density profiles of JET and 
Tore-Supra discharges [22, 23]. Following recent upgrades 
[24], the computational time for the QuaLiKiz eigenvalue 
solver at a single wavenumber in QuaLiKiz is on the order 
of ∼1 s.

A database of QuaLiKiz solutions was constructed, in the 
ion temperature gradient (ITG) instability regime. This insta-
bility is often the primary driver of tokamak microturbulence. 
The code was run with adiabatic electrons for simplicity, 

which also decreases the computational time to ∼300 ms. The 
database covers four input parameters known to have signifi-
cant impact on ITG transport fluxes in this regime: the driving 
normalized logarithmic ion temperature gradient R L/ Ti, the 
ion to electron temperature ratio T T/i e, the safety-factor q, and 

the magnetic shear ≡ŝ r

q

q

r

d

d
. In addition, the input normalized 

wavenumber ρθk s was scanned, constricted to above ion-Lar-
mor-radius scales, where ρ ≡ ( )T m Z q B/s e i i e . The following 
parameters were maintained fixed: the normalized logarith-
mic density gradient R/Ln   =   3, normalized radial location 
r/a   =   0.5. No Shafranov shift was assumed in the geometry. 
The database consists of a dense grid of points summarized 
in table  1, from which the training sets for the neural net-
work were sifted. The QuaLiKiz outputs we investigate are: 
growth rates and frequencies, which correspond to 5D input 
space; ion heat flux, which corresponds to 4D input space 
due to integration over wavenumbers. The database includes 
cases corresponding to unstable modes, and cases where 
no instabilities were found by QuaLiKiz, and the outputs  
are set to 0.

A regression of the ion heat flux has immediate application 
for transport modelling. However, a regression of the more 
primitive linear output has its own specific applications. For 
example, since the dispersion relation solver is the slowest 
part of the code, a fast reproduction of growth rates, frequen-
cies and eigenfunctions would allow rapid tests of various 
saturation rule formulations throughout parameter space. 
These saturation rules typically evolve following continuous 
comparisons with nonlinear simulations and experiments. In 
this sense, a database consisting of the complete outputs of 
linear codes does not become obsolete, while a quasilinear 
flux database can.

3.  Neural networks

The goal is to find analytical formulae which robustly repro-
duce the various QuaLiKiz outputs. To this end, a multilayer 
perceptron neural network is used, which is a nonlinear func-
tion with tunable variables (weights and biases), with the 
property of universal approximation [25, 26]. For an overview, 
with an emphasis on applications for fusion, see [27]. Linear 
combinations of the inputs and biases are propagated through 
a series of nonlinear transfer function vectors (named ‘hidden 
layers’), until eventually linearly combined to an output layer. 
With two hidden layers and a single output value (as used in 
this work), this is represented as:

Table 1.  Summary of input parameters for the QuaLiKiz adiabatic 
electron ITG database employed in this work.

Parameter Min value Max value No. of points

R L/ Ti
2 12 30

T T/i e 0.3 3 20
q 1 5 20
ŝ 0.1 3 20

ρθk s 0.05 0.8 16
Total no. of points 3 840 000

Nucl. Fusion 55 (2015) 092001
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where y is the output ‘neuron’ containing the output value (i.e. 
growth rate, frequency, or ion heat flux), xk the vector of input 
values, bn the bias vectors, win the ×M I weight matrix con-
necting the input vector to the 1st hidden layer, w1 the ×N M 
weight matrix connecting the two hidden layers, and w2 the 
weight vector connecting the 2nd hidden layer to the output 
neuron. g is the nonlinear transfer function, defined as a sig-
moid in this work:

( ) =
+

−−g x
2

1 e
1

x2� (2)

following a series of optimization tests, two hidden layers, as 
shown in equation (1), were employed here. The hidden layer 
sizes M and N were set to 40. The input layer size, I, is 4 for 
ion heat fluxes, and 5 for growth rates and frequencies.

The key stage is the determination of the optimized val-
ues of the weights and biases. This is done by minimizing a 
cost function consisting of the average squared error between 
the network output and known target output. This set of target 
output, known as the ‘training set’, is a subset of the QuaLiKiz 
output values from the database. The BFGS algorithm [28], 
implementing a quasi-Newton method, was used for the 
weight and bias optimization. All NN training in this work 
was carried out with the MATLAB neural network toolbox 
[29]. Following training, the network output then emulates the 
original model within the database input parameter envelope. 
This is validated by comparison to validation sets sifted from 
the database, which are different from the training set.

To avoid overfitting the data, regularization techniques 
were used in the regression. This corresponds to adding a pen-
alty term in the cost function related to the sum of squares 
of the network weights and biases, leading to smoother out-
put. The use of regularization ensures that the NN response is 
smooth (e.g. without strong oscillations) in sparse regions of 
training set parameter space or when extrapolating beyond the 
training set envelope.

The analytic form of the nonlinear regression function 
allows for the calculation of analytical gradients of the outputs 
with respect to the inputs. This is vital for the efficient solu-
tion of fast implicit schemes in real-time capable core trans-
port simulators such as RAPTOR [30]. The regularization also 
ensures smooth gradients throughout parameter space, impor-
tant for the stability of such implicit schemes.

4.  Regression results

We focus on the ion heat flux NN regression, due to its direct 
relevance for transport modelling applications. Successful 
regressions of the growth rates and frequencies were also 
obtained but for brevity not discussed here.

To capture the instability thresholds with high fidelity, the 
regression was only carried out for a training set correspond-
ing to unstable modes. The NN output for the stable regions 
in the validation set was then negative, since the regularized 

network tends to smoothly extrapolate the trends observed 
towards the training set envelope. For the final heat flux out-
put, these negative values were then set to zero to represent 
stability. This scheme avoids having the regularized regression 
network attempt to directly fit the discontinuous gradients at 
the instability thresholds, which would be performed poorly 
due to to the regularization constraint. This is an important 
point since tokamak transport often tends to be maintained 
near the critical temperature gradient thresholds, especially in 
high temperature regimes.

The network was trained with a training set of 35 000 points 
chosen randomly from the set of unstable modes in the data-
base. A comparison between the regression NN and QuaLiKiz 
outputs for a validation set of 10 000 unstable cases (differ-
ent from the training set) is shown in figure  1. The regres-
sion network has an RMS error of 0.77 in gyroBohm units 

(χ =
( )
T m

Z q B riGB
i
3/2

i
1/2

i e
2 ) when compared to the validation set. This 

RMS error is similar for the training set itself and is primarily 
due to the regularization constraint. The impact of this error 
on the simulated profiles is minor. This is due to stiffness, 
defined here as the local gradient of χi with respect to the driv-
ing R L/ Ti. To quantify this, a comparison was made between 
the R L/ Ti values predicted by the NN and QuaLiKiz to balance 
a representative χ = 1iGB . This was done for all values of q, ŝ, 
and T T/i e in the database. The RMS error was Δ( ) =R L/ 0.29Ti , 
which corresponded to an average relative error of only 4.2%.

The typical quality of the fits can be seen in figure 2, dis-
playing scans of the 4 separate input parameters while the oth-
ers remained fixed. Negative outputs of the NN network are 
set to zero. Note the resulting excellent fit of the instability 
thresholds. In addition, extrapolating the NN scans beyond the 
range of the training set maintains the trend observed in the 
data, due to the regularization. This is very encouraging with 
regard to extension of this approach to more sparse datasets in 
higher dimensions. However, we do not intend to routinely use 
NN models in poorly represented regions of parameter space, 
as the quality of extrapolation cannot be determined a priori. 

Figure 1.  Comparison between normalized ion heat fluxes obtained 
directly from QuaLiKiz (x-axis) and those from its NN regression 
( y-axis).
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Rather, the training sets should be continuously expanded to 
cover such encountered sparse or empty regions, and the NN 
then periodically retrained. Nevertheless, the smoothness of 
the regularized NN response when extrapolating ensures its 
robustness and stability during practical use as a transport 
model, including during phases when such sparse regions are 
encountered.

Each NN output is calculated on a sub 10 μs timescale in 
MATLAB on a Intel(R) Xeon(R) E5450 CPU @ 3.00 GHz. 
This is a 5 order of magnitude speedup in comparison to the 
original QuaLiKiz calculations.

5.  Application in transport codes

A transport model based on the trained neural network was 
constructed, and implemented both in the CRONOS [21] and 
RAPTOR [30] integrated modelling codes.

In CRONOS, the validity of the NN transport model was 
assured by a successful comparison with a JET baseline 
H-mode shot 73342 with ion and electron heat transport previ-
ously simulated [23] with the full QuaLiKiz model. For brev-
ity we will not focus further on this case. Rather, we focus on 
the real-time simulation capabilities offered by coupling the 
NN model to RAPTOR.

Presently, RAPTOR only models electron heat trans-
port. The NN model output was thus modified to roughly 
approximate ITG regime electron heat transport with kinetic 

electrons. This was done by assuming that heat fluxes in ITG 
kinetic electron cases are higher by factor 3 compared with 
adiabatic electron cases, and furthermore assuming an ion to 
electron heat flux ratio of =q q/ 3i e . These approximations are 
based on typical nonlinear and quasilinear observations in the 
ITG regime [5, 31].

In figure 3, we compare a RAPTOR simulation of an ITER 
hybrid scenario, using the QuaLiKiz NN model for electron 
heat transport, with a simulation of the same case originally 
carried out [32] using CRONOS and the GLF23 [33] trans-
port model. Using GLF23 allows to compare over ITER-scale 
discharge times of  >100 s, which is less tractable using the 
original QuaLiKiz model. For heat transport in a pure ITG 
regime, GLF23 and QuaLiKiz predictions are expected to be 
similar, as illustrated in specific single-time-slice compari-
sons [23].

The RAPTOR simulation uses all the same actuator (source) 
inputs and density evolution as the CRONOS simulation. Ion 
temperatures were held fixed at ∼T T/ 0.8i e  in L-mode and 

∼T T/ 0.9i e  in H-mode. The NN model was operational within 
a normalized toroidal flux coordinate (ρ) range of 0.25–0.95.  
For ρ > 0.95, χe was feedback controlled to maintain a pre-
scribed edge pedestal temperature of 4 keV. For ρ < 0.25, a 
constant χe was assumed to maintain a reasonable level of 
transport, since GLF23 and QuaLiKiz both predicted stability 
within that region. A RAPTOR simulation of an entire 300 
s ITER discharge took 10 s on a single CPU, corresponding 
to 30× faster than real-time. This combination of simulation 

Figure 2.  Comparison of NN parameter scans (blue solid lines) versus the original QuaLiKiz ion heat flux calculations (red dots). The 
scans are in R L/ Ti (top left panel), T T/i e (top right panel), q (bottom left panel) and ŝ (bottom right panel).
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speed and first-principle modelling is unprecedented. With 
CRONOS/GLF23, the same simulation took 24 h.

6.  Conclusions and outlook

A neural network fit to a restricted subspace of quasilinear 
gyrokinetic transport model calculations, relevant in the ITG 
regime, was carried out and applied as a transport model for 
integrated modelling. While the quasilinear model, QuaLiKiz, 
is 6 orders of magnitude faster than nonlinear simulations, the 
NN regression leads to a further 5 order of magnitude speedup. 
This model is thus real-time capable while still being based on 
first-principles, which is unprecedented. This model has been 
coupled to the CRONOS integrating modelling suite, and vali-
dated against a full QuaLiKiz simulation in the ITG regime. 
The model is also coupled to the real-time capable RAPTOR 
tokamak simulation code, and can model a 300 s ITER dis-
charge within 10 s, with good agreement with previous mod-
elling using CRONOS and the GLF23 transport model.

This opens up many new possibilities for real-time con-
troller design and validation, scenario preparation and opti-
mization, and real-time discharge supervision. Such models 
can be used to design controllers for the plasma profiles using 
model-based controller design methods (e.g. [34] or [35]). 
The transport model can be used in closed-loop simulations 
to validate the designed controllers. Recent work on plasma 
ramp-up trajectory optimization [36] was carried out with 
an ad-hoc transport model, and can now be improved using 
this first-principle-based transport model. Also, this transport 
model can be used in real-time simulations to verify the meas-
ured plasma evolution and warn a supervisory control sys-
tem of any unexpected deviations during the discharge [37]. 
Specifically for ITER, the faster-than-real-time opens up the 

possibility of (on-line) real-time optimization of the discharge 
evolution in response to such unexpected events.

While applications in the ITG transport regime are already 
feasible with this model, there remains much scope for expand-
ing the number of input dimensions in the databases used for 
the fits, as well as employing slower yet more complete linear 
gyrokinetic codes for populating the database. Neural network 
topology complexity favourably scales linearly with input 
dimensionality. However, we estimate that uniform density 
population of the input dimensions, as carried out in this work, 
is feasible up to ∼N 10. This is due to constraints on the NN 
training and quasilinear database calculation times. For higher 
dimensionalities, a training set which captures the natural cor-
relations of the input parameters is then vital. This can be done 
by basing the training sets on experimental parameters and 
reasonable extrapolations thereof. This is a feasible goal, as 
also evidenced in [17], and this work is ongoing.
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