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Abstract.

A particular translational symmetry of the local nonlinear δf gyrokinetic model

is demonstrated analytically and verified numerically. This symmetry shows that

poloidally translating all the flux surface shaping effects with large poloidal mode

number by a single tilt angle has an exponentially small effect on the transport

properties of a tokamak. This is shown using a generalization of the Miller local

equilibrium model to specify an arbitrary flux surface geometry. With this geometry

specification we find that, when performing an expansion in large flux surface shaping

mode number, the governing equations of gyrokinetics are symmetric in the poloidal

translation of the high order shaping effects. This allows us to take the fluxes from a

single configuration and calculate the fluxes in any configuration that can be produced

by translating the large mode number shaping effects. This creates a distinction

between tokamaks with mirror symmetric flux surfaces and tokamaks without mirror

symmetry, which is expected to have important consequences for generating toroidal

rotation using up-down asymmetry.

PACS numbers: 52.25.Fi, 52.30.Gz, 52.35.Ra, 52.55.Fa, 52.65.Tt

1. Introduction

Turbulence has been experimentally shown to dominate transport in tokamaks [1]. In

the last 30 years, the fusion community has made remarkable progress in understanding

turbulence using the theoretical model of gyrokinetics [2, 3]. Nonetheless, analytic

solutions to the gyrokinetic model are very difficult to find and necessitate many

simplifications [4, 5, 6, 7]. Typically large, expensive computer simulations are used

to find solutions for realistic configurations [8, 9, 10, 11]. However, it is possible to

use analytic techniques to establish properties of the gyrokinetic model and constrain

possible solutions [12, 13, 14].

In this work, we show a new symmetry of the gyrokinetic equations. This symmetry

means that poloidally translating all the high order flux surface shaping effects (i.e.

shaping effects with a large poloidal mode number) by a single tilt angle does not affect
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Figure 1. Example poloidal cross-section of a tokamak (a) without any tilt and (b)

with the high order flux surface shaping effects tilted by an angle θt. Circular flux

surfaces are shown in gray for comparison. The axis of axisymmetry is indicated by a

dashed line.

the transport properties of a tokamak (see figure 1). We will see that this is particularly

relevant because of the recent interest in up-down asymmetric tokamak geometries (i.e.

tokamaks that are not mirror symmetric about the midplane) [15, 16].

Breaking the up-down symmetry of the flux surfaces is potentially beneficial [15, 16]

because it removes a constraint that limits turbulent momentum transport to be small

in ρ∗ ≡ ρi/a � 1, where ρi is the ion gyroradius and a is the tokamak minor radius

[17]. Since significant momentum transport has the potential to stabilize dangerous

MHD instabilities [18, 19, 20] and directly reduce turbulent energy transport [21, 22],

up-down asymmetric devices merit investigation.

However, the space of up-down asymmetric flux surface shapes is enormous.

One class of shapes is those that can be produced by tilting an up-down symmetric

configuration poloidally by a single tilt angle. This makes flux surfaces that still have

mirror symmetry, but no longer have up-down symmetry. The symmetry presented

in this work shows that, because of the constraint on momentum transport in up-

down symmetric devices [12, 13, 15, 16], we would not expect these mirror symmetric

configurations to generate significant momentum flux, in the limit of high order

shaping effects. Consequently, this work establishes a distinction between devices with

mirror symmetric flux surfaces and devices without mirror symmetry, which may have

important consequences for flux surface shaping of any mode number.

Section 2 of this paper contains the analytic analysis, which includes introducing

gyrokinetics, detailing a generalized version of the Miller local equilibrium specification,

and demonstrating the translational symmetry of high order flux surface shaping.

Section 3 presents the results of nonlinear local gyrokinetic simulations. These

simulations are aimed at providing numerical verification of the analytic work. Finally,

section 4 offers a summary and some concluding remarks.
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2. Translational symmetry of high order flux surface shaping

In this section we will show the translational symmetry of high order flux surface shaping

in the gyrokinetic model. First we will give the governing equations of the complete

nonlinear local δf gyrokinetic model, including electromagnetic effects and rotation.

In these equations we will find several geometric coefficients that must be calculated

from the tokamak equilibrium. To do so, we will generalize the traditional Miller local

equilibrium [23] to specify arbitrarily shaped flux surfaces using Fourier analysis. This

reveals how the effect of high order shaping enters into the geometric coefficients and

hence the gyrokinetic model. Finally we will expand the gyrokinetic equations in the

limit of high order flux surface shaping and show that translation of high order shaping

does not affect particle, momentum, or energy transport.

2.1. Gyrokinetics

Gyrokinetics has many variations [24, 25, 26, 27, 28, 29, 30, 31, 32, 33], but is based

on the expansion of the Fokker-Plank and Maxwell’s equations in ρ∗ ≡ ρi/a� 1. This

model investigates plasma behavior with timescales much slower than the gyrofrequency

(i.e. ω � Ωi � Ωe), but retains the finite size of the gyroradius by assuming that the

perpendicular wavenumber of the turbulence is comparable to the ion gyroradius (i.e.

k⊥ρi ∼ 1). In this limit, the six dimensions of velocity space reduce to five because

the particle gyrophase can be ignored. As such, gyrokinetics evolves rings of charge as

they generate and respond to electric and magnetic fields. In this paper we will use

δf gyrokinetics, which assumes that the turbulence arises from perturbations to the

distribution function that are small compared to the background (i.e. fs1 � fs0, where

fs0 is the background distribution function and fs1 is the lowest order perturbation).

These particular choices have been shown experimentally to be appropriate for modeling

core turbulence [34]. Furthermore, we will assume the plasma is sufficiently collisional

so that the background distribution function is Maxwellian,

fs0 = FMs ≡ ns

(
ms

2πTs

)3/2

exp

(
−msw

2

2Ts

)
. (1)

Here ns is the density of species s, ms is the particle mass, Ts is the temperature,

~w ≡ ~v − RΩζ êζ is the velocity shifted into the rotating frame, R is the major radial

coordinate, Ωζ is the toroidal rotation frequency, ζ is the toroidal angle, and êζ is the

unit vector in the toroidal direction. To lowest order in ρi/a � 1, it can be shown

that all species rotate at Ωζ = −dΦ−1/dψ, where Φ−1 ∼ ρ−1
∗ Te/e is the lowest order

electrostatic potential and a flux function [35, 36, 37]. Here ψ is the poloidal magnetic

flux and e is the proton electric charge. While Ts and Ωζ are flux functions, we note

that (due to the centrifugal force) density is not a flux function, but is instead given by

[38]

ns (ψ, θ) = ηs (ψ) exp

(
msR

2Ω2
ζ

2Ts
− ZseΦ0

Ts

)
, (2)
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where ηs (ψ) is the pseudo-density flux function, θ is a poloidal angle, Zs is the electric

charge number, and Φ0 is the next order electrostatic potential. We can find Φ0 by

imposing quasineutrality,

∑

s

Zsens =
∑

s

Zseηs (ψ) exp

(
msR

2Ω2
ζ

2Ts
− ZseΦ0

Ts

)
= 0. (3)

From the assumption that k⊥ρi ∼ 1 (remembering our expansion in ρi/a� 1), we

know that the background plasma quantities vary little on the scale of the turbulence in

the directions perpendicular to the background magnetic field. This is called the local

approximation and it motivates using periodic boundary conditions in the perpendicular

directions. Ballooning coordinates [39] are generally used in local gyrokinetics to

model turbulence in a flux tube, a long narrow domain that follows a single field line.

These boundary conditions allow us to Fourier analyze in the poloidal flux ψ (which

parameterizes the radial direction) and in

α ≡ ζ − I (ψ)

∫ θ

θα(ψ)

∣∣∣∣
ψ

dθ′
(
R2 ~B · ~∇θ′

)−1

− Ωζt (4)

(which parameterizes the direction perpendicular to the field lines, but within the flux

surface). Here I (ψ) ≡ RBζ is the toroidal field flux function, ~B is the background

magnetic field (which we require to be axisymmetric), and t is the time. Note the free

parameter θα (ψ), which determines the field line selected by α = 0 on each flux surface

and will be important later in this work.

The Fourier analyzed gyrokinetic equation can be written as [13]

∂hs
∂t

+ w||b̂ · ~∇θ
∂hs
∂θ

∣∣∣∣
w||,µ

+ i (kψvdsψ + kαvdsα)hs + as||
∂hs
∂w||

∣∣∣∣
θ,µ

−
∑

s′

〈C(l)
ss′〉ϕ

+ {〈χ〉ϕ, hs} =
ZseFMs

Ts

∂〈χ〉ϕ
∂t

− vχsψFMs

[
1

ns

∂ns
∂ψ

∣∣∣∣
θ

(5)

+
msIw||
BTs

dΩζ

dψ
+
Zse

Ts

∂Φ0

∂ψ

∣∣∣∣
θ

−
msRΩ2

ζ

Ts

∂R

∂ψ

∣∣∣∣
θ

+

(
msw

2

2Ts
− 3

2

)
1

Ts

dTs
dψ

]
,

where the coordinates are t (the time), θ (a poloidal angle), kψ (the radial wavenumber),

kα (the poloidal wavenumber), w|| (the parallel velocity in the rotating frame), µ ≡
msw

2
⊥/2B (the magnetic moment), and we have already eliminated ϕ (the gyrophase)

by gyroaveraging. The unknowns are

hs ≡
〈〈(

fs1 +
Zseφ

Ts
FMs

)
exp (−ikψψ − ikαα)

〉

∆ψ

〉

∆α

(6)

(the Fourier-analyzed nonadiabatic portion of the distribution function) and the fields

contained in

〈χ〉ϕ ≡ J0 (k⊥ρs)
(
φ− w||A||

)
+

1

Ωs

µB

ms

2J1 (k⊥ρs)

k⊥ρs
B|| (7)
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(the Fourier analyzed gyroaveraged generalized potential). Here 〈. . .〉∆ψ ≡
∆ψ−1

∫
∆ψ

dψ (. . .) is a coarse-grain average over the radial distance ∆ψ (which is

larger then the scale of the turbulence, but smaller than the scale of the device),

〈. . .〉∆α ≡ ∆α−1
∫

∆α
dα (. . .) is a coarse-grain average over the poloidal distance ∆α

(which is larger then the scale of the turbulence, but smaller than the scale of the

device), 〈. . .〉ϕ is the gyroaverage at fixed guiding center, Jn (. . .) is the nth order Bessel

function of the first kind, φ is the perturbed electrostatic potential, A|| is the perturbed

magnetic vector potential, B|| is the component of the perturbed magnetic field parallel

to the background magnetic field,

k⊥ =

√
k2
ψ

∣∣∣~∇ψ
∣∣∣
2

+ 2kψkα~∇ψ · ~∇α + k2
α

∣∣∣~∇α
∣∣∣
2

(8)

is the perpendicular wavevector, ρs ≡
√

2µB/ms/Ωs is the gyroradius, Ωs ≡ ZseB/ms

is the gyrofrequency, and Zs is the species charge number.

The drift coefficients are given by

vdsψ ≡ ~vds · ~∇ψ (9)

=


− I

B

∂Φ0

∂θ
−
I
(
msw

2
|| + µB

)

msΩsB

∂B

∂θ
+

2BRΩζw||
Ωs

∂R

∂θ
+
IRΩ2

ζ

Ωs

∂R

∂θ


 b̂ · ~∇θ

and

vdsα ≡ ~vds · ~∇α = −∂Φ0

∂ψ
+
∂Φ0

∂θ

b̂ ·
(
~∇θ × ~∇α

)

B

−
msw

2
|| + µB

msΩs


∂B
∂ψ
− ∂B

∂θ

b̂ ·
(
~∇θ × ~∇α

)

B


−

µ0w
2
||

BΩs

∂p

∂ψ

∣∣∣∣
R

(10)

+
2Ωζw||

Ωs

êζ ·
(
~∇α× ~∇R

)
+
msRΩ2

ζ

Zse


∂R
∂ψ
− ∂R

∂θ

b̂ ·
(
~∇θ × ~∇α

)

B


 ,

where b̂ ≡ ~B/B is the magnetic field unit vector, µ0 is the permeability of free space,

p ≡∑s nsTs is the plasma pressure, and

∂p

∂ψ

∣∣∣∣
R

=
∂p

∂ψ

∣∣∣∣
θ

−
∑

s

nsmsRΩ2
ζ

∂R

∂ψ

∣∣∣∣
θ

. (11)

The parallel acceleration is given by

as|| =

(
− µ

ms

∂B

∂θ
− Zse

ms

∂Φ0

∂θ
+RΩ2

ζ

∂R

∂θ

)
b̂ · ~∇θ, (12)

C
(l)
ss′ is the linearized collision operator, the nonlinear term is

{〈χ〉ϕ, hs} =
∑

k′ψ ,k
′
α

(
k′ψkα − kψk′α

)
〈χ〉ϕ

(
k′ψ, k

′
α

)
hs
(
kψ − k′ψ, kα − k′α

)
, (13)
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and

vχsψ ≡ ikα 〈χ〉ϕ . (14)

In order to solve for φ, A||, and B|| we also need the Fourier analyzed quasineutrality

equation [13]

φ = 2π

(∑

s

Z2
s e

2ns
Ts

)−1∑

s

ZseB

ms

∫
dw||

∫
dµJ0 (k⊥ρs)hs, (15)

parallel current equation [13]

A|| =
2πµ0

k2
⊥

∑

s

ZseB

ms

∫
dw||

∫
dµJ0 (k⊥ρs)w||hs, (16)

and perpendicular current equation [13]

B|| = −2πµ0

∑

s

B

ms

∫
dw||

∫
dµ

2J1 (k⊥ρs)

k⊥ρs
µhs. (17)

Equations (3), (5), (15), (16), and (17) comprise the nonlinear electromagnetic

gyrokinetic model, in the presence of rotation.

Solving the gyrokinetic model for hs, φ, A||, and B|| allows us to calculate the

turbulent fluxes of particles, momentum, and energy as well as the turbulent heating.

The full expressions are written in Appendix A, but here we give only the electrostatic
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contribution,

Γφs ≡ −
〈
R

〈〈∫
d3whsêζ · δ ~E

〉

∆ψ

〉

∆t

〉

ψ

(18)

=
4π2i

msV ′

〈∑

kψ ,kα

kα

∮
dθJBφ (kψ, kα)

∫
dw||dµ hs (−kψ,−kα) J0 (k⊥ρs)

〉

∆t

(19)

Πφ
s ≡ −

〈
R

〈〈∫
d3whsmsR (~w · êζ +RΩζ) êζ · δ ~E

〉

∆ψ

〉

∆t

〉

ψ

(20)

=
4π2i

V ′

〈∑

kψ ,kα

kα

∮
dθJBφ (kψ, kα)

∫
dw||dµ hs (−kψ,−kα) (21)

×
((

I

B
w|| +R2Ωζ

)
J0 (k⊥ρs) +

i

Ωs

kψ

B

µB

ms

2J1 (k⊥ρs)

k⊥ρs

)〉

∆t

Qφ
s ≡ −

〈
R

〈〈∫
d3whs

(ms

2
w2 + ZseΦ0 −

ms

2
R2Ω2

ζ

)
êζ · δ ~E

〉

∆ψ

〉

∆t

〉

ψ

(22)

=
4π2i

V ′

〈∑

kψ ,kα

kα

∮
dθJBφ (kψ, kα)

∫
dw||dµ hs (−kψ,−kα) (23)

×
(
w2

2
+
ZseΦ0

ms

− 1

2
R2Ω2

ζ

)
J0 (k⊥ρs)

〉

∆t

P φ
Qs ≡

〈〈〈∫
d3wZsehs

∂φ

∂t

〉

∆ψ

〉

∆t

〉

ψ

(24)

=
4π2

V ′

〈∑

kψ ,kα

∮
dθJΩs

∂

∂t
(φ (kψ, kα))

∫
dw||dµ hs (−kψ,−kα) J0 (k⊥ρs)

〉

∆t

. (25)

Here hs ≡ fs1 + ZseφFMs/Ts is the nonadiabatic portion of the distribution function,

(. . .) indicates the quantity has not been Fourier analyzed, δ ~E = −~∇⊥φ is the

turbulent electric field, 〈. . .〉ψ ≡ (2π/V ′)
∮ 2π

0
dθJ (. . .) is the flux surface average,

〈. . .〉∆t ≡ ∆t−1
∫

∆t
dt (. . .) is a coarse-grain average over a time ∆t (which is longer

than the turbulent decorrelation time), V ′ ≡ 2π
∮
dθJ , J ≡

∣∣∣ ~B · ~∇θ
∣∣∣
−1

is the Jacobian,

and kψ ≡ ~k⊥ · ~∇ψ = kψ

∣∣∣~∇ψ
∣∣∣
2

+ kα~∇ψ · ~∇α.

In this work we are concerned with the effect of geometry on the turbulent fluxes.

All of the information concerning the tokamak geometry enters the gyrokinetic model

via ten geometric coefficients: B, b̂ · ~∇θ, vdsψ, vdsα, as||,
∣∣∣~∇ψ

∣∣∣
2

, ~∇ψ · ~∇α,
∣∣∣~∇α

∣∣∣
2

, R, and

∂R/∂ψ|θ. In order to calculate these geometric coefficients we will first need to specify

the background plasma equilibrium.
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●●
θθ

r0(θ)r0(θ)

R0
R

Z

Figure 2. An example flux surface of interest, r0 (θ), needed by equation (26) for the

Miller local equilibrium model.

2.2. Miller local equilibrium specification

To specify the background tokamak equilibrium for our local gyrokinetic model we will

use a generalization of the Miller local equilibrium model [23]. The Miller prescription

approximates the equilibrium around a single flux surface of interest when given: R0

(the tokamak major radius), r0 (θ) (the shape of the flux surface of interest), ∂r0/∂rψ|θ
(how the shape changes with minor radius), and (in the absence of significant rotation)

four scalar quantities. This information can be used to construct the nearby flux surfaces

according to

r (rψ, θ) = r0 (θ) +
∂r0

∂rψ

∣∣∣∣
θ

(rψ − rψ0) (26)

R (rψ, θ) = R0 + r (rψ, θ) cos (θ) (27)

Z (rψ, θ) = r (rψ, θ) sin (θ) , (28)

where rψ is a minor radial coordinate and rψ0 is the minor radial location of the flux

surface of interest (see figure 2). The four scalar quantities are commonly taken to be I

(the toroidal field flux function), q (the safety factor), dq/drψ (the magnetic shear),

and dp/drψ (the pressure gradient) of the flux surface of interest. However, when

the plasma is rotating quickly, dp/drψ is replaced by ∂p/∂rψ|R, which requires four

additional, species-dependent parameters: ηsTs (the pseudo-pressure), d (ηsTs) /drψ (the

derivative of the pseudo-pressure), msΩ
2
ζ/2Ts (a rotational frequency parameter), and

d
(
msΩ

2
ζ/2Ts

)
/drψ (the derivative of the rotational frequency parameter).

The functions r0 (θ) and ∂r0/∂rψ|θ allow us to calculate poloidal derivatives of any

order as well as the first order radial derivatives: ∂R/∂rψ|θ and ∂Z/∂rψ|θ (but not

higher order radial derivatives). This is enough information to calculate the poloidal
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magnetic field through

~Bp = ~∇ζ × ~∇rψ
dψ

drψ
, (29)

where we can use the identity

~∇u1 =
∂~r/∂u2 × ∂~r/∂u3

∂~r/∂u1 · (∂~r/∂u2 × ∂~r/∂u3)
(30)

for (u1, u2, u3), a cyclic permutation of (rψ, θ, ζ). Note that we can determine dψ/drψ
from q using

q ≡ I

2π

∮ 2π

0

∣∣∣∣
ψ

dθ
(
R2 ~Bp · ~∇θ

)−1

. (31)

In addition to giving ~Bp, the derivative dψ/drψ is used to calculate d/dψ from d/drψ.

To calculate some of the geometric coefficients (e.g. those containing ~∇α), we will

need to take the radial derivative of Bp ≡
∣∣∣ ~Bp

∣∣∣. However, in the local Miller model we

cannot calculate this directly from our geometry specification because it contains second

order radial derivatives. Instead we calculate it by ensuring that the Grad-Shafranov

equation [40],

R2~∇ ·
(
~∇ψ
R2

)
= −µ0R

2 ∂p

∂ψ

∣∣∣∣
R

− I dI
dψ

, (32)

is satisfied. Using the Grad-Shafranov equation,

R2~∇ ·
(
~∇ψ
R2

)
=
R2

J

∂

∂ψ

∣∣∣∣
θ

(
J

R2

∣∣∣~∇ψ
∣∣∣
2
)

+
R2

J

∂

∂θ

∣∣∣∣
ψ

(
J

R2
~∇ψ · ~∇θ

)
, (33)

equation (30), and the Jacobian

J ≡
∣∣∣~∇ψ ·

(
~∇θ × ~∇ζ

)∣∣∣
−1

=
(
~Bp · ~∇θ

)−1

=
1

Bp

∂lp
∂θ

∣∣∣∣
ψ

(34)

we find

∂Bp

∂ψ

∣∣∣∣
θ

= − µ0

Bp

∂p

∂ψ

∣∣∣∣
R

− I

R2Bp

dI

dψ
−Bp

(
∂lp
∂θ

∣∣∣∣
ψ

)−1
∂

∂ψ

∣∣∣∣
θ

(
∂lp
∂θ

∣∣∣∣
ψ

)
(35)

+

(
∂lp
∂θ

∣∣∣∣
ψ

)−1
∂

∂θ

∣∣∣∣
ψ


Bp

(
∂lp
∂θ

∣∣∣∣
ψ

)−1(
∂R

∂ψ

∣∣∣∣
θ

∂R

∂θ

∣∣∣∣
ψ

+
∂Z

∂ψ

∣∣∣∣
θ

∂Z

∂θ

∣∣∣∣
ψ

)
 ,

where lp is the poloidal arc length such that

∂lp
∂θ

∣∣∣∣
ψ

=

√√√√
(
∂R

∂θ

∣∣∣∣
ψ

)2

+

(
∂Z

∂θ

∣∣∣∣
ψ

)2

. (36)
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Note that this also allows us to find dI/drψ from dq/drψ using equation (31) after

differentiating radially. Lastly we can calculate

~∇α = −
[
I

∫ θ

θα

∣∣∣∣
ψ

dθ′

(
1

R2Bp

∂lp
∂θ

∣∣∣∣
ψ

(
1

I

dI

dψ
− 1

Bp

∂Bp

∂ψ

∣∣∣∣
θ

− 2

R

∂R

∂ψ

∣∣∣∣
θ

+

(
∂lp
∂θ

∣∣∣∣
ψ

)−1
∂

∂ψ

∣∣∣∣
θ

(
∂lp
∂θ

∣∣∣∣
ψ

)


−

(
I

R2Bp

∂lp
∂θ

∣∣∣∣
ψ

)

θ=θα

dθα
dψ

+
dΩζ

dψ
t


 ~∇ψ (37)

− I

R2Bp

∂lp
∂θ

∣∣∣∣
ψ

~∇θ + ~∇ζ,

directly from equation (4), where all quantities are evaluated on the flux surface of

interest.

2.3. Asymptotic expansion ordering

Now we will investigate the effect of high order flux surface shaping on the geometric

coefficients and ultimately the fluxes of particles, momentum, and energy. We can

always Fourier analyze the flux surface shape (without loss of generality) to write

r0 (θ) = rψ0

(
1−

∑

m

Cm cos (m (θ + θtm))

)
(38)

and consequently

∂r0

∂rψ

∣∣∣∣
θ

= 1−
∑

m

[(Cm + rψ0C
′
m) cos (m (θ + θtm)) (39)

− mrψ0Cmθ
′
tm sin (m (θ + θtm))] .

Here m is the shaping effect mode number, Cm is the mode strength, θtm is the poloidal

tilt angle of the mode, C ′m controls how effectively the mode strength penetrates radially,

and θ′tm indicates how the tilt angle changes radially. The negative sign in front of the

Fourier modes in equations (38) and (39) was chosen so that m = 2 with θtn = 0

corresponds to the traditional vertical elongation, rather than horizontal elongation.

Next we will divide the Fourier modes into low order, indicated by n, and high

order, indicated by m to get

r0 (θ) = rψ0

(
1−

∑

n

Cn cos (n (θ + θtn))−
∑

m

Cm cos (m (θ + θtm))

)
(40)

and

∂r0

∂rψ

∣∣∣∣
θ

= 1−
∑

n

[(Cn + rψ0C
′
n) cos (n (θ + θtn))− nrψ0Cnθ

′
tn sin (n (θ + θtn))] (41)

−
∑

m

[(Cm + rψ0C
′
m) cos (m (θ + θtm))−mrψ0Cmθ

′
tm sin (m (θ + θtm))] .
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This allows us to order n ∼ 1 and expand in mc � 1, where mc is a characteristic

high order mode number such that m ∼ mc for every m. We will use this expansion

in mc � 1 to investigate the effect of high order flux surface shaping on a traditionally

shaped equilibrium. The division between m and n is completely general and can be

done for any combination of Fourier modes, but we expect that for the expansion to be

accurate (and hence useful) there should be a clear separation of scales between the two

groups.

This expansion distinguishes the long spatial scale coordinate θ, from a short spatial

scale coordinate

z ≡ mcθ. (42)

We can incorporate the short spatial scale by substituting z for θ in the high order

Fourier terms in equations (40) and (41) to get r0 (θ, z) and ∂r0/∂rψ|θ,z. Furthermore

this separation of scales, e.g. hs (θ, z), means that

∂

∂θ

∣∣∣∣
w||,µ

=
∂

∂θ

∣∣∣∣
z,w||,µ

+mc
∂

∂z

∣∣∣∣
θ,w||,µ

. (43)

Experimentally we are only interested in bulk behavior, so we will eventually average

quantities in z using

〈. . .〉z ≡
1

2π

∮ π

−π

∣∣∣∣
θ

dz (. . .) . (44)

2.4. Gyrokinetic symmetry

In this section we will present a symmetry of the gyrokinetic model, when expanding

in mc � 1. We expect turbulent eddies to extend along the field line and average over

very small scale variation. Therefore, it is intuitive that the effect of tilting flux surface

shaping should diminish in the limit of high order shaping. However, what is surprising

is that this symmetry proves that the effect diminishes exponentially with mc � 1,

rather than polynomially. Hence we find that tilting high order flux surface shaping

has an exponentially small effect on the turbulent fluxes. This argument only relies on

mc � 1 and does not presume that the flux surface shaping is weak.

We will start with a completely general local equilibrium, with flux surfaces

specified by r0 (θ, z (θ)) and ∂r0/∂rψ|θ,z (see equations (38), (39), and (42)). Using

this specification we will compare two different geometries that are identical except for

the form of z (θ). In the untilted case z (θ) = zu (θ) ≡ mcθ, while in the tilted case

z (θ) = zt (θ) ≡ mc (θ + θt). We see that the tilted case includes a single global tilt of all

the high order shaping effects (those that scale with mc). This alters the equilibrium and

in principle changes the transport properties, but we will show its effect is exponentially

small when expanding in mc � 1.

Although we just presented two specific examples of z (θ), we are free to calculate

the geometric coefficients for a completely general z (θ). From the form of the ten
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geometric coefficients (see equations (5) through (12)) we see that z (θ) only enters as z,

derivatives of z, and the integral over poloidal angle contained in ~∇α (see equation (37)).

This means that we can indicate the poloidal dependence of any geometric coefficient,

Qgeo =

{
B, b̂ · ~∇θ, vdsψ, vdsα, as||,

∣∣∣~∇ψ
∣∣∣
2

, ~∇ψ · ~∇α,
∣∣∣~∇α

∣∣∣
2

, R, ∂R/∂ψ|θ
}

, by writing it as

Qgeo

(
θ, z,

∂z

∂θ
,
∂2z

∂θ2
,

∫ θ

θα

∣∣∣∣
ψ

dθ′Fα

(
θ′, z (θ′) ,

∂z

∂θ′
,
∂2z

∂θ′2

)
−
(

1

R2B2
p

∂lp
∂θ

∣∣∣∣
ψ

)

θ=θα

dθα
dψ

)
,

(45)

where

Fα

(
θ, z (θ) ,

∂z

∂θ
,
∂2z

∂θ2

)
≡ 1

R2Bp

∂lp
∂θ

∣∣∣∣
ψ

(
1

I

dI

dψ
− 1

Bp

∂Bp

∂ψ

∣∣∣∣
θ

− 2

R

∂R

∂ψ

∣∣∣∣
θ

+

(
∂lp
∂θ

∣∣∣∣
ψ

)−1
∂

∂ψ

∣∣∣∣
θ

(
∂lp
∂θ

∣∣∣∣
ψ

)
 (46)

is a periodic function of both θ and z.

Now we will compare the untilted equilibrium (z (θ) = zu (θ) ≡ mcθ) and the

equilibrium with tilted high order shaping effects (z (θ) = zt (θ) ≡ mc (θ + θt)). Since

the only difference between the two cases is contained in the form of z (θ), we only

need to look for differences in the arguments of equation (45). We immediately see that

∂zu/∂θ = ∂zt/∂θ = mc and ∂2zu/∂θ
2 = ∂2zt/∂θ

2 = 0, so we can eliminate the derivates

to write the geometric coefficients as

Qgeo

(
θ, z,

∫ θ

θα

∣∣∣∣
ψ

dθ′Fα (θ′, z (θ′))−
(

1

R2B2
p

∂lp
∂θ

∣∣∣∣
ψ

)

θ=θα

dθα
dψ

)
(47)

for both cases.

As we will now show, we can also eliminate the integral
∫ θ
θα

∣∣∣
ψ
dθ′Fα (θ′, z (θ′)), in

addition to the derivatives. An alternative method to do this is given in Appendix B,

but here we will start by defining the operator

I [g] (θ, z) ≡
∫ z

z0

∣∣∣∣
θ

dz′ (g (θ, z′)− 〈g (θ, z)〉z) , (48)

where the integral over z is done holding θ constant, g (θ, z) is a yet unspecified function

that is periodic in both θ and z, and z0 is chosen such that 〈I [g] (θ, z)〉z = 0 (which

can always be found when g is periodic in z). Taking the total derivative in θ we find

d

dθ
I [g] (θ, z (θ)) =

∂

∂θ

∣∣∣∣
z

I [g] +mc
∂

∂z

∣∣∣∣
θ

I [g] , (49)

where we have taken dz/dθ = mc. Substituting in equation (48) and rearranging gives

g (θ, z)− 〈g (θ, z)〉z =
1

mc

d

dθ
I [g]− 1

mc

∂

∂θ

∣∣∣∣
z

I [g] . (50)
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After using ∂/∂θ|z (I [g]) = I [∂g/∂θ|z] and taking the integral of this equation we

are left with∫ θ

θα

∣∣∣∣
ψ

dθ′ (g (θ′, z (θ′))− 〈g (θ′, z)〉z) =
1

mc

(I [g] (θ, z)−I [g] (θα, z (θα))) (51)

− 1

mc

∫ θ

θα

∣∣∣∣
ψ

dθ′I

[
∂g

∂θ′

∣∣∣∣
z

]
.

Now if we choose g (θ, z) = I [∂g/∂θ|z], equation (51) becomes
∫ θ

θα

∣∣∣∣
ψ

dθ′I

[
∂g

∂θ′

∣∣∣∣
z

]
=

1

mc

(
I 2

[
∂g

∂θ

∣∣∣∣
z

]
(θ, z (θ))−I 2

[
∂g

∂θ

∣∣∣∣
z

]
(θα, z (θα))

)
(52)

− 1

mc

∫ θ

θα

∣∣∣∣
ψ

dθ′I 2

[
∂2g

∂θ′2

∣∣∣∣
z

]

because, since 〈I [g]〉z = 0, we know that ∂/∂θ|z 〈I [g]〉z = 〈I [∂g/∂θ|z]〉z = 0. Here

I i [. . .] indicates that the operator I [. . .] is applied i times. Substituting equation (52)

into the last term of equation (51), we see that equation (51) is a recursion relation that

can be put in the form of an infinite series,
∫ θ

θα

∣∣∣∣
ψ

dθ′ (g (θ′, z (θ′))− 〈g (θ′, z)〉z) =
∞∑

p=1

(−1)p−1

mp
c

(
I p

[
∂p−1g

∂θp−1

∣∣∣∣
z

]
(θ, z (θ)) (53)

− I p

[
∂p−1g

∂θp−1

∣∣∣∣
z

]
(θα, z (θα))

)
.

Finally by substituting g (θ, z) = Fα (θ, z) and rearranging we can calculate the integral

appearing in the geometric coefficients (see equation (47)) to be
∫ θ

θα

∣∣∣∣
ψ

dθ′Fα (θ′, z (θ′)) =

∫ θ

θα

∣∣∣∣
ψ

dθ′ 〈Fα (θ′, z)〉z +
∞∑

p=1

(−1)p−1

mp
c

(
I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(θ, z (θ))

− I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(θα, z (θα))

)
. (54)

We choose θα = dθα/dψ = 0 in the untilted case (z = zu = mcθ) and see that the

quantity appearing in the geometric coefficients (see equation (47)) is
∫ θ

0

∣∣∣∣
ψ

dθ′Fα (θ′, zu (θ′)) =

∫ θ

0

∣∣∣∣
ψ

dθ′ 〈Fα (θ′, zu)〉z (55)

+
∞∑

p=1

(−1)p−1

mp
c

(
I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(θ, zu (θ))−I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(0, 0)

)
.

In the tilted case (z = zt = mc (θ + θt)) we can carefully choose

dθα
dψ

=

(
1

R2B2
p

∂lp
∂θ

∣∣∣∣
ψ

)−1

θ=θα

[∫ 0

θα

∣∣∣∣
ψ

dθ′ 〈Fα (θ′, z)〉z (56)

+
∞∑

p=1

(−1)p−1

mp
c

(
I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(0, 0)−I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(θα, zt (θα))

)]
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to get

∫ θ

θα

∣∣∣∣
ψ

dθ′Fα (θ′, zt (θ′))−
(

1

R2B2
p

∂lp
∂θ

∣∣∣∣
ψ

)

θ=θα

dθα
dψ

=

∫ θ

0

∣∣∣∣
ψ

dθ′ 〈Fα (θ′, zt)〉z (57)

+
∞∑

p=1

(−1)p−1

mp
c

(
I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(θ, zt (θ))−I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(0, 0)

)
,

which exactly matches equation (55) (except for replacing zu with zt). This means the

entire effect of the tilt can be contained in the functional form of z. To make things as

simple as possible we also choose

θα = 0 (58)

for the tilted case.

This means that the geometric coefficients for both the untilted and tilted cases

can be written in the form

Qgeo (θ, z) , (59)

where z = zu for the untilted case and z = zt for the tilted case. Therefore, we know

that

Qt
geo (θ, zu) = Qu

geo (θ, zu +mcθt) (60)

for each of the geometric coefficients.

Since all of the geometric coefficients depend separately on both θ and z we know

that hs, φ, A||, and B|| must also. The only other way the poloidal coordinate enters

the gyrokinetic equations is through the poloidal derivative in the streaming term, but

equation (43) is appropriate for both z = zu and z = zt. Hence, using any solution to the

gyrokinetic equation for the untilted case,
{
hus (θ, zu) , φ

u (θ, zu) , A
u
|| (θ, zu) , B

u
|| (θ, zu)

}
,

we can construct a solution for the tilted case,

{
hts (θ, zu) , φ

t (θ, zu) , A
t
|| (θ, zu) , B

t
|| (θ, zu)

}
(61)

=
{
hus (θ, zu +mcθt) , φ

u (θ, zu +mcθt) , A
u
|| (θ, zu +mcθt) , B

u
|| (θ, zu +mcθt)

}
,

given our choices for the free parameter θα (ψ) in the definition of α (see equations (56)

and (58)). Because the average over z (see equation (44)) can always be shifted by mcθt
without affecting the result these two solution sets give the same large scale fluxes and
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heating, e.g. in the electrostatic limit they are

Γφs =
4π2i

msV ′

〈∑

kψ ,kα

kα

∮
dθ

〈
JBφ (kψ, kα)

∫
dw||dµ hs (−kψ,−kα) J0 (k⊥ρs)

〉

z

〉

∆t

(62)

Πφ
s =

4π2i

V ′

〈∑

kψ ,kα

kα

∮
dθ

〈
JBφ (kψ, kα)

∫
dw||dµ hs (−kψ,−kα) (63)

×
((

I

B
w|| +R2Ωζ

)
J0 (k⊥ρs) +

i

Ωs

kψ

B

µB

ms

2J1 (k⊥ρs)

k⊥ρs

)〉

z

〉

∆t

Qφ
s =

4π2i

V ′

〈∑

kψ ,kα

kα

∮
dθ

〈
JBφ (kψ, kα)

∫
dw||dµ hs (−kψ,−kα) (64)

×
((

w2

2
+
ZseΦ0

ms

− 1

2
R2Ω2

ζ

)
J0 (k⊥ρs)

)〉

z

〉

∆t

P φ
Qs =

4π2

V ′

〈∑

kψ ,kα

∮
dθ

〈
JΩs

∂

∂t
(φ (kψ, kα))

∫
dw||dµ hs (−kψ,−kα) J0 (k⊥ρs)

〉

z

〉

∆t

.

(65)

Looking at the full electromagnetic fluxes and the turbulent heating (see Appendix A)

we see that they also remain unchanged by the tilt.

Since we relied on expanding in mc � 1 to separate scales in equations (62)

through (64), this argument can only give the fluxes order-by-order, not the unexpanded

quantity. We already know that, since the two configuration are not exactly identical,

they will in general produce different fluxes. However, the above argument proves the

two configurations must have the same fluxes to all orders. This demonstrates that,

while the fluxes from the two configurations can be different, the difference does not

scale polynomially and so cannot scale more strongly than ∼ exp (−βmγ
c ), where β and

γ are positive constants.

2.5. Accuracy of the local equilibrium approximation

We finish with an important remark concerning the use of a local, as opposed to global,

MHD equilibria. Although there was no problem in the Miller local equilibrium, it may

not be possible to exactly translate the high order flux surface shaping poloidally in

a real global equilibrium. We can always prescribe a flux surface shape and Fourier

analyze it and its radial derivative (see equations (38) and (39)). We can also use the

external shaping coils to arbitrarily tilt the fast shaping of the flux surface of interest.

However, the way that the radial derivative of the flux surface shape changes with tilt

is set by the global MHD equilibrium and is not under our control (as it is in the

Miller local equilibrium approximation). The global equilibrium in a screw pinch has

cylindrical symmetry, but in a tokamak toroidal effects preclude translating the radial
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derivative of the flux surface shape in the same manner we translated the flux surface

shape itself.

This means that, strictly speaking, when we introduce zt (θ) = mc (θ + θt) into

the derivative of the flux surface shape we are no longer modeling a physically possible

tokamak. However, we can show that this error is small by rearranging the Grad-

Shafranov equation as

∇2ψ + I
dI

dψ
=

2

R
~∇R · ~∇ψ − µ0R

2 ∂p

∂ψ

∣∣∣∣
R

. (66)

The left side of this equation is completely cylindrically symmetric, while the right side

contains all of the toroidal effects, which only enter through R (rψ, θ) (see equation

(27)). Taylor expanding in ε ≡ rψ0/R0 � 1 (the inverse aspect ratio), we see that

the toroidal effects enter the O (εi) Grad-Shafranov equation as sin (jθ) and cos (jθ),

where 1 ≤ j ≤ i. As shown in reference [41], these terms cause a natural shift (i.e. the

Shafranov shift) that enters to O (ε), a natural elongation that enters to O (ε2), a natural

triangularity that enters to O (ε3), etc. This indicates that shaping with mode numbers

greater than i are unaffected by the toroidicity. Therefore, the error introduced into the

geometric coefficients by the local equilibrium approximation is O (εmmin), where mmin is

the smallest mode number that is tilted. This error is exponentially small in mmin � 1,

hence it does not change our result that tilting the equilibrium has an exponentially

small effect on the turbulent fluxes.

3. Numerical results

In this section we will give numerical results to test the analytic conclusions of the

previous section. We use GS2 [8], a local δf gyrokinetic code, to calculate the nonlinear

turbulent fluxes of particles, momentum, and energy generated by a given geometry.

All simulations are electrostatic and collisionless. The geometry is specified using

the generalization of the Miller local equilibrium model presented in section 2.2. We

investigate the influence of shape of the flux surface of interest by scanning mc, the mode

number of the poloidal shaping effect. Except for the flux surface shape, all parameters

are fixed at Cyclone base case values [42]: a minor radius of rψ0/a = 0.54, a major

radius of R0/a = 3, a safety factor of q = 1.4, a magnetic shear of ŝ = 0.8, a temperature

gradient of a/LTs = 2.3, and a density gradient of a/Lns = 0.733, where a is the tokamak

minor radius. The fluxes calculated by GS2 are normalized to their gyroBohm value,

which for the momentum flux is ΠgB = ρ2
thinimiv

2
thi/a, where ρthi = vthi/Ωi is the ion

thermal gyroradius and vthi =
√

2Ti/mi is the ion thermal velocity.

We will compare these numerical scans in mc to the analytic theory in two different

manners. From equation (61) we expect that, given the poloidal distribution of any

flux from a geometry with high order shaping, it should be possible to predict the flux

from any geometry that is identical except for a poloidal translation of the high order

shaping. First, we will directly investigate this by comparing the poloidal dependence
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Figure 3. The mc = 2 through mc = 6 flux surface geometries in the tilted (solid)

and up-down symmetric (dashed) configurations, with circular flux surfaces shown for

comparison (gray).

of the fluxes of particles, momentum, and energy in just such geometries. Then, we will

show that the change in the total fluxes due to translating high order shaping disappears

in the limit of mc � 1.

3.1. Poloidal structure of fluxes

In section 2.4, we presented an analytic argument showing that (when expanding in

mc � 1) the solution to the gyrokinetic equation for a given geometry can be used to

generate the solution to any geometry that is identical, except for a global tilt of the

high order shaping effects. This relationship, given by equation (61), gives a prediction

for the poloidal distributions of the fluxes. The full electromagnetic expressions are

defined in Appendix A, but in the electrostatic limit they are given by

γφs ≡ −R
〈〈∫

d3whsêζ · δ ~E
〉

∆ψ

〉

∆t

(67)

πφs ≡ −R
〈〈∫

d3whsmsR (~w · êζ +RΩζ) êζ · δ ~E
〉

∆ψ

〉

∆t

(68)

qφs ≡ −R
〈〈∫

d3whs

(ms

2
w2 + ZseΦ0 −

ms

2
R2Ω2

ζ

)
êζ · δ ~E

〉

∆ψ

〉

∆t

(69)

pφQs ≡
〈〈∫

d3wZsehs
∂φ

∂t

〉

∆ψ

〉

∆t

, (70)

which are just equations (18), (20), (22), and (24) without the flux surface average

(e.g. Qs = 〈qs〉ψ). Specifically, using equation (61) the analytic theory predicts that we
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should find

γts (θ, z) = γus (θ, z +mcθt) (71)

πts (θ, z) = πus (θ, z +mcθt) (72)

qts (θ, z) = qus (θ, z +mcθt) , (73)

ptQs (θ, z) = puQs (θ, z +mcθt) , (74)

where the superscript u indicates the geometry is up-down symmetric (i.e. untilted) and

t indicates the geometry is tilted. By simulating several geometries (see the up-down

symmetric geometries shown in the bottom row of figure 3) and their corresponding

tilted geometries (see the top row of figure 3) we can numerically verify equations (71)

through (74). We will focus on the ion momentum flux because the symmetry has

particularly profound consequences for it, but the analysis in this section can be applied

to any of the fluxes.

We should note that GS2 automatically takes θα (ψ) = 0 in its definition of α

(see equation (4)), so we have to be careful about making numerical predictions from

our analytic results. In general, converting between our definition of α and the GS2

definition, αGS2, involves accounting for a shift in α and ~∇α of

δ (α) = −I
∫ 0

θα

∣∣∣∣
ψ

dθ′
(
R2 ~B · ~∇θ′

)−1

(75)

δ
(
~∇α
)

= −I
[∫ 0

θα

∣∣∣∣
ψ

dθ′Fα (θ′)−
(

1

R2Bp

∂lp
∂θ

∣∣∣∣
ψ

)

θ=θα

dθα
dψ

]
~∇ψ (76)

respectively. However, given our specific choices in equations (56) and (58) we see that

δ (α) = 0 (77)

δ
(
~∇α
)

= I

[
∞∑

p=1

(−1)p−1

mp
c

(
I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(0, 0) (78)

− I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(0,mcθt)

)]
~∇ψ.

The only effect of the shift in α is to introduce a phase factor of exp (−ikαδ (α))

in the Fourier analyzed turbulent quantities hs, φ, A||, and B|| (e.g. equation (6)). The

shift in ~∇α enters the gyrokinetic model only through

~k⊥ = kψ ~∇ψ + kα~∇α =

(
kψ + kα

∂~r

∂ψ
· δ
(
~∇α
))

~∇ψ + kα~∇αGS2. (79)

Fortunately, neither of these changes has an effect on equations (71) through (74). The

phase factor cancels because all transport is driven by the beating of two turbulent

quantities (see Appendix A): one with the complex conjugate taken, the other without.

As seen in equation (79), the translation of ~∇α can be taken into account by translating
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kψ. Since the fluxes we are looking at involve the sum over all of wavenumber space,

shifting flux from one wavenumber to another does not alter the total value.

The geometry for the scan (see figure 3) is specified by equations (40) and (41),

with only one high order mode, m = mc, and no low order modes (i.e. Cn = 0). We will

choose Cm = 3/ (4m2
c), C

′
m = (mc − 2)Cm/rψ0, and θ′tm = 0 in the scan to give the flux

surfaces a reasonable shape. The tilt angle is fixed at θtm = π/ (2mc), the angle halfway

between neighboring up-down symmetric configurations (at θtm = 0 and θtm = π/mc).

Since GS2 is not constructed to separate the two spatial scales represented by θ

and z, our simulations give πs (θ) = πs (θ, z (θ)) rather than πs (θ, z). Therefore, we

have to take the data produced by GS2, separate the dependences on the fast and slow

poloidal coordinate, and then translate only the fast spatial variation. We start by

Fourier analyzing the poloidal distribution of momentum flux from GS2,

πus (θ) =
∞∑

n=1

Pn sin (nθ) , (80)

in the untilted case. Note that since the untilted case is up-down symmetric we know

the momentum flux distribution must be odd [13], so we can neglect the cos (nθ) term.

This even term must be retained when considering the particle or heat fluxes. We want

to transform equation (80) into the form of a two dimensional Fourier series in the two

separate spatial scales, e.g.

πus (θ, z) =
∞∑

l=0

kmax∑

k=kmin

Pk+lmc (sin (lz) cos (kθ) + cos (lz) sin (kθ)) . (81)

Using some trigonometric identities and equation (42) it can be shown that if we choose

to define k as

k ≡ n− lmc, (82)

then we can automatically transform equation (80) into equation (81).

The definition of l contains the physics of the scale separation and consequently

will strongly affect how well we match GS2 results. The definition of l controls which

harmonics (enumerated by n) are mapped to l = 0 (and remain untilted), as opposed

to l = 1 (which are tilted by mcθt), l = 2 (which are tilted by 2mcθt), etc. Intuitively

we expect modes with n ≈ 1 should remain untilted (i.e. map to l = 0), modes with

n ≈ mc should map to l = 1, and modes with n ≈ 2mc should map to l = 2. This

general intuition motivates some sort of rounding to integers (e.g. bn/mcc, bn/mce,
dn/mce). The specific form of

l ≡
⌊
n+ 2

mc

⌋
(83)

(where b. . .c is the floor function that gives the integer value n such that n ≤ x < n+1)

was chosen in accordance with figure 5. We see that, as the shaping effect mode number
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Figure 4. The Fourier spectrum of the poloidal distribution of the ion momentum

flux generated by circular flux surfaces.
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Figure 5. The Fourier spectrum of the poloidal distribution of ion momentum flux

after subtracting the flux generated by circular flux surfaces (shown in figure 4) for

up-down symmetric (gray) and tilted (black) configurations in the mc = 7 (solid) and

mc = 8 (dashed) geometries.

mc is increased, the mc − 2 and mc − 1 Fourier terms of the momentum flux track with

it, while all lower modes stay roughly constant. Unsurprisingly, this definition of l was

also found to produce the best agreement between theory and GS2 data. Our choice for

l means that kmin = −2 and kmax = mc − 3, leaving us with

πus (θ, z) =
∞∑

l=0

mc−3∑

k=−2

Pk+lmc (sin (lz) cos (kθ) + cos (lz) sin (kθ)) (84)

from equation (81). Now we can use equation (72) to construct

πts (θ, z) =
∞∑

l=0

mc−3∑

k=−2

Pk+lmc (sin (lz + lmcθt) cos (kθ) + cos (lz + lmcθt) sin (kθ)) , (85)

a prediction for the distribution of momentum flux in the tilted geometry.
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Figure 6. The full poloidal distribution of the ion momentum flux (see equation

(68)) for the tilted geometry (black, thick), up-down symmetric geometry with

the appropriate Fourier modes translated (dashed, thick), and up-down symmetric

geometry without any translation (gray, thin), using (a) mc = 5, (b) mc = 6, (c)

mc = 7, and (d) mc = 8 shaping modes (see figure 3). The momentum flux is

normalized to the gyroBohm value.
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Figure 7. The fractional error (see equation (86)) between the poloidal distribution

of the momentum flux in the tilted geometry and the distribution predicted using the

untilted geometry (circles), with the fractional error between the tilted and untilted

(without any adjustment) shown as a control (crosses).



Translational symmetry of high order flux surface shaping 22

Fundamentally, in this comparison we are testing the truth of equation (61) and

(72), which we used in deriving equation (85). In figure 6, we use the numerical results

from the untilted configuration and equation (85) to generate what we expect the

momentum flux to be in the corresponding tilted configuration. Visually we see good

agreement. In figure 7 we quantify the agreement by calculating the fractional error

according to

∆π ≡
∮ π
−π dθ

∣∣πact
s (θ)− πcalc

s (θ)
∣∣

∮ π
−π dθ |πact

s (θ)| , (86)

where πact
s (θ) is the momentum flux distribution from the tilted geometry (the thick

black lines in figure 6) and πcalc
s (θ) is either the predicted value calculated from the

untilted geometry (the dashed black lines in figure 6) or the raw untilted geometry (the

solid gray lines in figure 6) to serve as a control. As is also apparent from figure 6, when

we look at geometries with larger values of mc we find better agreement between the

titled geometry and the up-down symmetric geometry (when appropriately translated).

The agreement breaks down significantly below mc = 5 and we have enough information

to understand why. Extrapolating from figure 5, we would expect mc = 4 shaping to

be problematic because it generates an ion momentum flux distribution with a strong

Fourier mode at 2. This would be indistinguishable from the dominant Fourier mode

at 2, which is inherent to tokamaks (see figure 4). Since one cannot separate these two

contributions (the one from the mc = 4 shaping and the one inherent to tokamaks), it

is not possible to translate the contribution from the mc = 4 shaping as is appropriate.

These numerical results verify equation (61) and the derivation of section 2.4.

Additionally, though not shown here, the poloidal distributions of particle, momentum,

and heat flux (for both ions and electrons) all agree with theory in a similar manner to

what is seen in figure 6.

3.2. Change in total fluxes with tilt

From section 2.4 we expect the change in the turbulent fluxes (see equations (62) through

(64)) due to tilting the fast shaping effects to be exponentially small in mc � 1. In

figure 8, we show the fractional difference between the ion heat flux from an up-down

symmetric configuration and the corresponding tilted configuration, for the geometry of

figure 3. We see that the difference is consistent with an exponential as expected. The

difference is pronounced for the mc = 2 case and rapidly diminishes at higher mc.

4. Conclusions

The translational symmetry shown in this work demonstrates that the tilt angle of

high order flux surface shaping has little effect on transport of particles, momentum,

or energy. This suggests that tilting elongation will have a larger effect on transport

than tilting higher order modes (e.g. triangularity or squareness). Additionally the
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Figure 8. The fractional difference in the electrostatic ion heat flux between up-down

symmetric and tilted geometries (see figure 3) as a function of mc (points), with an

exponential fit of the form K exp (−βmc) (line).

translational symmetry establishes a close connection between up-down symmetric

devices and devices that have flux surfaces with mirror symmetry. This is because

all flux surfaces that have mirror symmetry can be produced by tilting a corresponding

up-down symmetric flux surface by a single tilt angle. This correspondence distinguishes

mirror symmetric devices from non-mirror symmetric devices, which has particular

significance for momentum transport because up-down symmetric devices do not

transport momentum to lowest order in ρ∗ ≡ ρi/a� 1. Therefore, breaking the mirror

symmetry of flux surfaces may increase the momentum transport generated by up-down

asymmetry.
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Appendix A. Electromagnetic turbulent fluxes and heating

From references [13, 29, 33] among others we see that the turbulent electromagnetic

fluxes of particles, momentum, and energy as well as the turbulent heating are the only

turbulent quantities needed to evolve the transport equations for particles, momentum,

and energy. Furthermore, it is convenient to calculate these fluxes in a frame rotating

with the bulk plasma, using the velocity variable ~w ≡ ~v − RΩζ êζ . To do so we will

follow the procedure outlined in Section II.D and Appendix E of reference [13].
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The complete electromagnetic turbulent flux of particles in a tokamak can be

defined as

Γs ≡ 〈γs〉ψ ≡ −
〈
R

〈〈∫
d3whsêζ ·

(
δ ~E + ~w × δ ~B

)〉

∆ψ

〉

∆t

〉

ψ

, (A.1)

where γs is the poloidally-dependent particle flux, δ ~E = −~∇⊥φ is the turbulent electric

field, and δ ~B = B||b̂ + ~∇A|| × b̂ is the turbulent magnetic field. After considerable

manipulation we find the flux of particles to be

Γs =
4π2i

msV ′

〈∑

kψ ,kα

kα

∮
dθJB

∫
dw||dµ hs (−kψ,−kα)

× [φ (kψ, kα) J0 (k⊥ρs) (A.2)

− A|| (kψ, kα)w||J0 (k⊥ρs)

+ B|| (kψ, kα)
1

Ωs

µB

ms

2J1 (k⊥ρs)

k⊥ρs

]〉

∆t

.

The complete electromagnetic turbulent flux of toroidal angular momentum in a

tokamak can be defined as

Π ≡
∑

s

Πs + ΠB, (A.3)

where

Πs ≡ 〈πs〉ψ ≡ −
〈
R

〈〈∫
d3whsmsR (~w · êζ +RΩζ) êζ ·

(
δ ~E + ~w × δ ~B

)〉

∆ψ

〉

∆t

〉

ψ

(A.4)

is the contribution from particles,

ΠB ≡ −
〈
R

〈〈
↔
σ : êζ ~∇ψ

〉
∆ψ

〉

∆t

〉

ψ

(A.5)

is the momentum transported by the electromagnetic fields, πs is the poloidally-

dependent angular momentum flux,

↔
σ ≡ 1

µ0

~B ~B − 1

2µ0

B2
↔

I (A.6)

is the Maxwell stress tensor, and
↔

I is the identity matrix. After considerable
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manipulation we find the angular momentum transported by particles to be

Πs =
4π2i

V ′

〈∑

kψ ,kα

kα

∮
dθJB

∫
dw||dµ hs (−kψ,−kα)

×
[
φ (kψ, kα)

((
I

B
w|| +R2Ωζ

)
J0 (k⊥ρs) +

i

Ωs

kψ

B

µB

ms

2J1 (k⊥ρs)

k⊥ρs

)
(A.7)

− A|| (kψ, kα)

((
I

B
w|| +R2Ωζ

)
w||J0 (k⊥ρs) +

(
i
w||
Ωs

kψ

B
+
I

B

)
µB

ms

2J1 (k⊥ρs)

k⊥ρs

)

+ B|| (kψ, kα)
1

Ωs

((
I

B
w|| +R2Ωζ

)
µB

ms

2J1 (k⊥ρs)

k⊥ρs
+

i

2Ωs

kψ

B

µ2B2

m2
s

G (k⊥ρs)

)]〉

∆t

.

and the transport by the fluctuating fields to be

ΠB =
2πi

µ0V ′

〈∑

kψ ,kα

kα

∮
dθJA|| (kψ, kα)

(
−ikψA|| (−kψ,−kα) + IB|| (−kψ,−kα)

)
〉

∆t

,

(A.8)

where kψ ≡ ~k⊥ · ~∇ψ = kψ

∣∣∣~∇ψ
∣∣∣
2

+ kα~∇ψ · ~∇α and G (x) ≡ 8 (2J1 (x)− xJ0 (x)) /x3.

Note that, when summing over all species, equation (17) can be used to show that the

B|| term in equation (A.8) cancels the third A|| term in equation (A.7).

The complete electromagnetic turbulent flux of energy carried by particles can be

defined as

Qs ≡ 〈qs〉ψ ≡ −
〈
R

〈〈∫
d3whs

(ms

2
w2 + ZseΦ0 −

ms

2
R2Ω2

ζ

)
êζ (A.9)

·
(
δ ~E + ~w × δ ~B

)〉
∆ψ

〉

∆t

〉

ψ

,

where qs is the poloidally-dependent energy flux. After considerable manipulation we

find the energy transported by particles to be

Qs =
4π2i

V ′

〈∑

kψ ,kα

kα

∮
dθJB

∫
dw||dµ hs (−kψ,−kα)

(
w2

2
+
ZseΦ0

ms

− ms

2
R2Ω2

ζ

)

× [φ (kψ, kα) (J0 (k⊥ρs)) (A.10)

− A|| (kψ, kα)
(
w||J0 (k⊥ρs)

)

+ B|| (kψ, kα)
1

Ωs

(
µB

ms

2J1 (k⊥ρs)

k⊥ρs

)]〉

∆t

.

The complete electromagnetic turbulent heating can be written as

PQs ≡ 〈pQs〉ψ ≡
〈〈〈∫

d3wZsehs
∂χ

∂t

〉

∆ψ

〉

∆t

〉

ψ

, (A.11)
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where χ ≡ φ − ~w · ~A is the generalized potential. After considerable manipulation we

find the energy generated by turbulence to be

PQs =
4π2

V ′

〈∑

kψ ,kα

∮
dθJΩs

∫
dw||dµ hs (−kψ,−kα)

×
[
∂

∂t
(φ (kψ, kα)) J0 (k⊥ρs) (A.12)

− ∂

∂t

(
A|| (kψ, kα)

)
w||J0 (k⊥ρs)

+
∂

∂t

(
B|| (kψ, kα)

) 1

Ωs

µB

ms

2J1 (k⊥ρs)

k⊥ρs

]〉

∆t

.

Appendix B. Alternative calculation for ~∇α integral

Here we will show that, when you tilt the fast shaping (i.e. z (θ) = mc (θ + θm)) of a

given geometry, it has no effect on the integral appearing in ~∇α, except by modifying the

form of z (θ). This was demonstrated in section 2.4, but here we present an alternative

method. To address the integral appearing in equation (47) we will first choose the free

parameter θα (ψ) in the untilted case such that it and its radial derivative vanish on the

flux surface of interest (i.e. θα = 0 and dθα/dψ = 0). Then we can define

Gθ
α (θ) ≡

∫ θ

0

∣∣∣∣
ψ

dθ′Fα (θ′, zu (θ′)) , (B.1)

which only depends on θ. However, we can reintroduce the fast spatial scale by Fourier

analyzing in θ to get

Gθ
α (θ) = Pshearθ +

∞∑

n=0

(
PC
n cos (nθ) + P S

n sin (nθ)
)
. (B.2)

We know that Gθ
α must have this form because Fα is periodic in both θ and z (see

equation (46)), but can also have a constant offset from the magnetic shear. Then we

can rearrange, introducing n = lmc + k and using some trigonometric identities, to get

Gθ
α (θ) = Pshearθ +

∞∑

l=0

kmax∑

k=−kmax

(
PC
lmc+k cos (lmcθ) cos (kθ)− PC

lmc+k sin (lmcθ) sin (kθ)

+ P S
lmc+k sin (lmcθ) cos (kθ) + P S

lmc+k cos (lmcθ) sin (kθ)
)
. (B.3)

Doing this relies on having a clear separation of scales such that kmax � mc. Now we

can substitute in z = mcθ and define

Gα (θ, z) ≡ Pshearθ +
∞∑

l=0

kmax∑

k=−kmax

(
PC
lmc+k cos (lz) cos (kθ)− PC

lmc+k sin (lz) sin (kθ)

+ P S
lmc+k sin (lz) cos (kθ) + P S

lmc+k cos (lz) sin (kθ)
)
. (B.4)
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Next, by the fundamental theorem of calculus, equation (B.1) implies

d

dθ
(Gα (θ, zu (θ))) = Fα (θ, zu (θ)) . (B.5)

However we also see that

d

dθ
(Gα (θ, zu (θ))) =

∂Gα

∂θ

∣∣∣∣
zu

+mc
∂Gα

∂zu

∣∣∣∣
θ

(B.6)

d

dθ
(Gα (θ, zt (θ))) =

∂Gα

∂θ

∣∣∣∣
zt

+mc
∂Gα

∂zt

∣∣∣∣
θ

. (B.7)

Because the derivatives of zu (θ) and zt (θ) are identical, equations (B.6) and (B.7) have

the same form. This allows us to use equation (B.5) to establish that

d

dθ
(Gα (θ, zt (θ))) = Fα (θ, zt (θ)) . (B.8)

Again using the fundamental theorem of calculus, we find

∫ θ

θα

∣∣∣∣
ψ

dθ′Fα (θ′, zt (θ′)) = Gα (θ, zt (θ))−Gα (θα, zt (θα)) . (B.9)

Therefore, we will carefully select the free parameter θα (ψ) in the tilted case so that

∫ θ

θα

∣∣∣∣
ψ

dθ′Fα (θ′, zt (θ′))−
(

1

R2B2
p

∂lp
∂θ

∣∣∣∣
ψ

)

θ=θα

dθα
dψ

= Gα (θ, zt (θ)) . (B.10)

To do this requires that we choose

θα = 0 (B.11)

dθα
dψ

= −
(

1

R2B2
p

∂lp
∂θ

∣∣∣∣
ψ

)−1

θ=0

Gα (0, zt (0)) , (B.12)

meaning the effect of the tilt is entirely contained in z. Note that this is identical to the

results of the main text (see equations (56) and (58)) because

Gα (0, zt (0)) = −
∞∑

p=1

(−1)p−1

mp
c

(
I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(0, 0)−I p

[
∂p−1Fα
∂θp−1

∣∣∣∣
z

]
(0,mcθt)

)
.

(B.13)

This means that the geometric coefficients for both the untilted and tilted cases

can be written in the form Qgeo (θ, z), where z = zu for the untilted case and z = zt for

the tilted case.
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