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T. R. Jarboe, C. J. Hansen,  A. C. Hossack,  G. J. Marklin, K. D. Morgan, B. A. Nelson, D. A. 
Sutherland, and B. S. Victor, University of Washington, Seattle, WA 98195, USA 

1. Executive Summary 
The HIT program studies and develops helicity injection current drive for future magnetic confinement 
burning plasma experiments. In a reactor, helicity injection current drive promises to be orders of 
magnitude more efficient than neutral beam or RF current drive. Providing efficient steady state current 
drive is one of the critical outstanding issues for the next generation of long pulse tokamaks.  It is also 
essential for spheromaks and reversed-field pinches (RFPs), which have lower β-poloidal (requiring more 
current) and lower q (giving less bootstrap current). Presently, work is on an innovative new approach to 
helicity injection current drive, the steady inductive helicity injection (SIHI) current drive method for 
forming and sustaining high-β spheromaks, spherical tori (STs), tokamaks, and RFPs. In SIHI, two or 
more inductive injectors, oscillating out of phase, produce a constant helicity injection rate for a constant, 
optimized current profile. The SIHI front-end was installed on the established HIT facility at the 
University of Washington, forming the Helicity Injected Torus with Steady Inductive helicity injection 
(HIT-SI) experiment. In this three year grant cycle the experiment has achieved the record current gain 
for spheromaks of greater than 3.5, toroidal currents of up to 90 kA and separatrix currents of 60 kA and 
ran at injector frequencies of 5.8, 14.5, 36.8, 53.5, and 68.5 kHz. Careful validation studies using 
NIMROD have shown that two-fluid pressureless MHD agree with current gain and fluctuation amplitude 
only at low frequency and the profile differs from the experiments. The simulation is kink unstable while 
the experiment is kink stable. 

We discovered that only high edge current and magnetic fluctuations across the mean field equilibrium 
(and not instability or relaxation) are required for dynamo current drive. By imposing fluctuations HIT-SI 
is the first experiment to meet both of these requirements on a stable equilibrium and is the first 
experiment to sustain a kink-stable equilibrium with dynamo current drive. All previous dynamo current 
drive experiments produced the fluctuations through instability. A NIMROD simulation of a scaled-up 
HIT-SI geometry shows that when fluctuations are applied to a stable equilibrium, closed flux is 
preserved and destroyed only by instability. Thus the proper causal relations from the observation that 
poor confinement is correlated with fluctuations are that instability causes fluctuations and instability 
causes poor confinement not that fluctuations cause poor confinement. Thus for dynamo current drive to 
be compatible with good confinement the fluctuations must be imposed on a stable equilibrium, giving 
Imposed Dynamo Current Drive (IDCD). Even more exciting, as the frequency was increased the 
equilibrium transitioned from low-beta to high-beta and a more symmetric equilibrium. The frequency of 
the transition indicates that the imposed fluctuations are controlling the pressure driven modes. In 
addition, dynamo current drive should cause differential rotation, the key ingredient for transport barriers. 

This program is for the validation of extended MHD simulations using PSI-TET and NIMROD working 
with the Plasma Science and Innovation Center (PSI-Center), the continual development and 
understanding of IDCD, the demonstration and study of profile control, and the study the rotation profile 
of IDCD with and without rotating fluctuations. The new HIT-SI3 configuration has three new smaller 
injectors, all mounted on the same end of the spheromak. The relative phasing of the injectors controls the 
imposed fluctuation profile and allows rotating fluctuations to be imposed. HIT is particularly attractive 
for this research because the inductive drive removes the electrode-plasma interface, which is difficult to 
model.  

2. Program objectives 
This white paper is about the HIT program. A new energy efficient current drive and profile control 
method, recently discovered by the HIT program, called Imposed Dynamo Current Drive1 (IDCD) is 
being developed. A kink-stable equilibrium can be efficiently sustained using imposed fluctuations, and 
the current profile can, in principle, be controlled for optimum confinement by controlling the imposed 
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fluctuation profile. Both are large steps for controlled fusion. In particular, experiments using three 
injectors on one side (HIT-SI3) will be done. a) With 120o phasing, the effects of imposed fluctuations on 
plasma rotation and stability will be studied. b) Profile control by changing the imposed fluctuation 
profile, which depends on injector phasing, will be investigated. c) Improved density control may allow 
the pulse length to be increased from 1 ms to 6 ms, making it possible to heat to 100 eV. d) The edge of 
the equilibrium will be studied. e) Codes for predicting the current profiles especially in the edge will be 
validated and more generally the HIT team will work with the PSI-Center to develop validated codes for 
predicting the behavior of future confinement experiments using IDCD. The current drive method is 
being applied to a high-β spheromak and has applications to reversed-field pinches, tokamaks, and 
spherical tori.  

3. Background and Accomplishments 

3.1. Motivation 
The Helicity Injected Torus (HIT) program studies and develops helicity injection current drive for 
magnetic confinement. With the achievement of greatly improved parameters on the Helicity Injected 
Torus with Steady Inductive helicity injection (HIT-SI) experiment, during the present grant period, came 
the discovery of Imposed Dynamo Current Drive1 (IDCD), a method of efficiently sustaining a kink- 
stable equilibrium with the possibility of current profile control. Toroidal currents up to 90 kA and over 
3.5 times the injector current (the spheromak record) and separatrix current of 60 kA are achieved using 
IDCD on HIT-SI2.  In addition, at high frequency (ωinj   vi/a where vi is the ion thermal speed and a is 
the minor radius) high-β equilibria are sustained, another first for spheromaks 3.  Kink-instability driven 
relaxation was considered a necessary part of dynamo current drive until now. With IDCD, the 
fluctuations are imposed on a stable plasma configuration using asymmetric injectors resulting in 
sustainment that is compatible with closed flux. NIMROD simulations show that stable equilibria can 
have closed flux with imposed B/B of 10%. The high power efficiency with low-cost power of inductive 
injectors removes the requirement of high bootstrap fraction and lower current-drive costs to an attractive 
level. Efficient sustainment with good confinement enables the spheromak and RFP as reactor concepts. 

Current drive by conventional means (e.g. neutral beam injection, lower hybrid waves) suffers from 
intrinsically low efficiency.  In particular, for current driven in reactor conditions, the power coupled to 
the plasma through these methods needs to be as much as 1000 times greater than the minimum power to 
sustain the driven current against Ohmic dissipation4,5, that is POhm / PCD = 10-3. There is also an efficiency 
penalty for generating the power and delivering it to the plasma of ηCD ~ 0.25 with present technology6.  
These considerations lead to an unacceptably high recirculating power fraction fREC, as high as 0.5 for a 
DEMO-type reactor7, which would likely preclude commercial acceptance.  There is consensus, therefore, 
in the fusion research community (e.g. Theme 2 and Thrusts 4-5 of the ReNeW planning workshop) that 
significant advances in current drive must occur in order to make fusion economically viable.  In the 
mainstream of fusion development, as reflected in the ITER Physics Basis8, such advances are envisioned 
to come from a combination of technology improvement (raising the power coupling efficiency to 0.6-
0.7) and reliance on a very high fraction of bootstrap current—however, even if these improvements are 
attained to the most optimistic degree, they are foreseen to improve fREC only to marginally acceptable 
levels for commercialization. In addition, profile control will be difficult with a small fraction of the 
current being driven.  

In contrast, relatively little attention is given to the high ceiling for improvement in the parameter POhm / 
PCD.  Helicity injection current drive, the research topic of this white paper, has a predicted POhm / PCD of 
the order 0.1 for reactor conditions9—if developed, this two order of magnitude improvement over 
conventional methods could reduce the dominance of current drive cost in a reactor to insignificance.  
This could allow the mainline of fusion development, the tokamak, to be economically viable.  If, 
however, the tokamak does not gain commercial acceptance, then helicity injection current drive could be 
all the more important to enable alternative magnetic confinement concepts that depend even more 
fundamentally on large amounts of efficient, externally driven current, such as spheromaks and reversed 
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field pinches (RFPs). The HIT program was motivated by the success of Coaxial Helicity Injection (CHI) 
current drive on spheromaks10 and by helicity injection current drive on RFPs11 and tokamaks.12 CHI 
start-up was investigated in the HIT-II experiment and then successfully scaled up to NSTX13; this is an 
important precedent for the ability of the university-level HIT program to produce innovative techniques 
that scale to national-level fusion facilities.  This research is to further develop and study IDCD to form 
and sustain tokamaks, spherical tori (ST), spheromaks, and RFPs.   

This research also contributes to the goal of reducing operational and maintenance complexity of toroidal 
confinement and Thrust 18 of the ReNeW planning workshop: “Achieve high-performance toroidal 
confinement using minimal externally applied magnetic field”. Presently, the tokamak has three coil sets 
and a toroidal vacuum chamber that are interlinked.  The coil sets are the transformer solenoid, the 
toroidal field coils and the equilibrium coils. The transformer is used for current drive on present 
tokamaks and works very well since the plasma current is almost purely toroidal.  However, since it is 
only used for startup in a reactor and other current drive methods must be developed anyway, it can be 
eliminated and indeed recent ARIES reactor studies14 do not have this coil. The solenoid-free startup 
method developed on HIT-II using CHI that has been very successful on NSTX13 and the first DEMO will 
probably not have the transformer coil set. Of the remaining two coils only the equilibrium coils are 
fundamental for toroidal confinement and stable equilibria have been produced transiently that have good 
confinement at temperatures in the kilovolt range using very little15 or no16,17,18,19,20,21 externally produced 
toroidal field. With IDCD, efficient steady-state current drive with sufficient current profile control is 
possible and elimination of the toroidal field coil allows a simple vacuum vessel, further reducing 
operational and maintenance complexity leading to economically competitive fusion power.22  

In addition to current drive, the program focuses on rotation generation, profile control, and code 
validation as described in Section 4. This program contributes to the FES mission because understanding 
and developing efficient current drive is helping “to build the scientific foundation needed to develop a 
fusion energy source” and validation work is helping with “creating theoretical and computational models 
to resolve essential physics principles.” This program contributes to FES goals 1 and 4. This program is 
contributing to the 2007 Greenwald’s FESAC  panel report on Priorities, Gaps, and Opportunities 
through Theme A6 “Plasma Modification by Auxiliary Systems” and A3 “Validated Theory and 
Predictive Modeling” and Gap G-4. “Control strategies for high-performance burning plasmas, running 
near operating limits, with auxiliary systems providing only a small fraction of the heating power and 
current drive”. With IDCD, all the current can be driven without the need of bootstrap current because 
IDCD is orders of magnitude more efficient. IDCD also contributes through recommendation 4 I-2. 
“Extensions to ITER AT capabilities”. This research applies to all five top tier thrusts identified by the 
FESAC priorities panel.23 Other issues addressed include: reducing operational and maintenance 
complexity of toroidal confinement, and some plasma facing materials development. This paragraph 
applies to our initiative white paper as well. 

3.2. Steady Inductive Helicity Injection (SIHI) current drive 
SIHI has constant inductive helicity injection with no power or helicity ejection. . HIT-SI uses a bow-tie 
cross-section flux conserver to produce a high- spheromak.24 For inductive drive, the time-averaged 
voltage on one injector is zero with the voltage passing through zero.  Thus, for constant injection, at least 
two injectors must be used so one can inject during the zero crossing of the other.  To prevent helicity 
ejection when the voltage is negative, the flux must change sign with the voltage.  HIT-SI is among the 
simplest experiments that can meet these requirements and be compatible with the bow tie spheromak.  
HIT-SI has two oscillating injectors driven 90 out of phase.25  The injectors are 180 segments of a 
toroidal pinch attached to a slotted flux conserver as shown in Figure 1.  The individual injectors are 
referred to as the “X injector” and the “Y injector”. 
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Figure 6. The black curve is the magnetic field 
profile of the IDCD predicted mean Grad-
Shafranov equilibrium. The red dots are 
internal probe data with the upper toroidal field 
and the lower poloidal field. The green curves 
are the profiles for the constant  Taylor state 
with Itor measured and the blue curve is resistive 
two-fluid MHD scaled to have the measured Itor. 
All are for shot 122385 at 1.5 ms.  

 

Figure 7 shows the data from a high current 14.5 kHz and a high current gain 68.5 kHz discharge. The 
discharge time is limited because of overheating of the wall and excess density late in time. None-the-
less, the pulse lengths are much longer than an injector period showing that the method is steady state.  
 
HIT-SI has run at 5.8 kHz, 14.5 kHz, 36.8 kHz, 53.5 kHz, and 68.5 kHz.  All data at gains greater than 
2.5 fit very well to the two-step λ (≡µoj/B) profile defined in reference 1, which is a flat, kink-stable 
profile. For this discussion a “kink” is a long wavelength current driven instability. IDCD seems to be 
causing the current penetration because: a) all fits to the data require this extremely flat j/B profile of 
IDCD; b) profiles are too n=1 kink-stable to be caused by kink modes; c) pressureless 2-fluid simulation 
show an extremely hollow profile that is unstable to n=1 kink modes confirming that the flat profiles in 
the experiment are not caused by kink modes.  Pressure driven modes can lower the q-profile  
(q is the safety factor) giving current penetration and their role in relaxation is under investigation3.  In 
addition, at higher frequencies the imposed fluctuations appear to control the pressure driven modes 
because: a) as the injector frequency is raised a transition occurs near inj   (where  = vi/size, the 
growth rate of the pressure driven mode); b) the high frequency equilibria are more quiescent with much 

higher beta and showing sufficient confinement as in Figure 8; and c) at high frequency n/<n> µ inj 

indicating the pacing of the pressure driven mode  and the slope of n/<n> vs inj  agrees with measured 

K. (n/<n> » p/<p> » Wplas/<Wplas> » inj/E,   E » 3βK/2). (Confinement is considered sufficient 

when the current-drive power can heat the plasma to the stability β-limit since further increase will not 
raise the plasma pressure.)  

Thus, IDCD (perhaps assisted by pressure driven interchange activity) causes a current penetration that 
keeps the equilibrium stable to the destructive kink modes, while at high frequency the imposed 
fluctuations limit the damage from interchange and allow sufficient confinement3. At high frequency 

Figure 5. The real part of the injector impedance due to the spheromak region divided by j/n, 
predicted to be constant between the vertical lines when IDCD is operating. 

d) e)

Z = 2.06 ± 0.35 × 1012 j/n   (1.2 ms – 1.8 ms) Z = 1.79 ± 0.30 × 1012 j/n   (1.5 ms – 2.5 ms)
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PSI-Center is in the process of validating the code on the EPR experiments of the Lithium Tokamak 
Experiment (LTX) and the High Beta Tokamak (HBT).  

Our present effort in validation is predicting the magnetic and velocity fields and the temperature given 
the injector current and flux and initial and boundary conditions of density. Adding the new features 
allows the next step of predicting the magnetic and velocity fields and the density evolution given the 
injected gas, the recycling rate, the circuit excitation and Braginskii transport. Modeling the recycling rate 
will be started. 

5. Summary of the HIT program plan. 

The HIT program is focused on developing IDCD on a low-aspect-ratio symmetric torus called a 
spheromak with applications to RFPs and tokamaks. The plan is as follows; 1) validate a 3D two-fluid 
MHD code that models the injectors, the insulated boundary, the external circuits, the full geometry, 
interacting dynamic neutrals, and transport with special attention to the edge; 2) develop and validate a 
method of rapidly predicting the current profile produced by a given flux conserver and injector array and 
test profile control; 3) improve the HIT-SI3 machine performance including better density control and 
testing the effects of imposing rotating fluctuations; and 4) improve the plasma diagnostics for more 
scientific information. The goal is a better understanding of IDCD and magnetic fluctuations in general 
while developing the inductively sustained symmetric torus concept. New understanding, new data, and 
more predictive codes provide the scientific bases for improving machine performance.  
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