By Barrie Lawson, UK

Nuclear Reactions

In the chemical reactions associated with combustion, the atoms in the molecules of the active materials rearrange themselves into new, more stable, molecules in which they are more tightly bound and in the process, releasing surplus energy in the form of heat.

In nuclear reactions it is the sub-atomic particles in the atomic nucleus, the protons and neutrons, which rearrange themselves to form new elements or isotopes with more stable nuclei. In this case the energy released by the reaction in the form of kinetic energy (manifest as heat) and electromagnetic energy (gamma radiation) is millions of times greater. See Energy Content

Note: The reactions discussed on this page are all nuclear reactions not chemical reactions.

Practical applications of the use of nuclear energy to generate electricity are given on the Nuclear Energy - The Practice page

Atomic Structure

Atomic Structure and Energy Levels

Definitions

The diagram above shows a representation of the constituents of an atom using Lithium as an example.

Decay, Fission and Fusion

Three different types of nuclear reactions are possible.

In all three transformations, decay, splitting and fusing, the nuclear reaction is accompanied by a tiny reduction in the total mass of the components and the release of energy.

The fission reaction can proceed uncontrollably and needs to be slowed down whereas the fusion reaction takes prodigious mounts of energy to speed it up and get it started. The fusion process is therefore inherently stable with no threat of runaway.

A word about Iron (56Fe26)

Iron is believed to be the tenth most abundant element in the universe and the fourth most abundant in the Earth's crust.

The graph of binding energies above shows that the Iron atom, situated in the middle of the periodic table, has the highest binding energy and hence is the most stable element. It neither splits nor fuses with other atoms in a nuclear reaction. It represents the dividing line between fission and fusion.

The closer an element's mass number is to that of Iron the the more stable it is and the less the likelihood that it will split or fuse with other atoms easily. The further an element is from Iron in the periodic table the less the binding energy holding it together, so that the elements at the extremes of the periodic table are the least stable and the most reactive. The large heavy atoms at the top of the table can achieve more stable equilibria by fission and the small light atoms at the lower end of the table can reach more stable states by fusion.

Attempting to fuse two atoms which are heavier than iron or to split an atom which is lighter than iron will require energy to be expended and will result in daughter elements, with less stable atoms having less binding energy, further way from the maximum stability point, .

In summary - Nuclear fission in an element heavier than Iron produces energy and fission in any element lighter than Iron requires energy. By contrast, nuclear fusion reactions between elements lighter than Iron produces energy and fusion in elements heavier than Iron requires energy.

Nuclear Decay

Nuclear or radioactive decay was first discovered in some naturally occurring minerals containing elements such as Uranium and Radium. It is the spontaneous process which occurs in radioactive materials by which the nuclei of unstable atoms, the parent nuclides, gradually break up and are transformed into more stable isotopes or into atoms of a different type, the daughter nuclides, consequently losing energy by emitting radiation in the form of ionised particles and / or electromagnetic waves.

Example

The most common isotope of Uranium, U-238 decays by alpha decay to form Thorium-234, a radioactive silvery metal, with the emission of one Helium atom (alpha particle). Thus

238U92    ⇒    234Th90    +    4He2

The daughter nuclide (thorium-234) has 2 fewer protons and neutrons than the parent nuclide (uranium-238)

At the atomic level, nuclear decay is a random process so that it is impossible to predict when a particular atom will decay. However in practical samples which contain a large number of similar atoms, the average decay rate is predictable.

Nuclear Fission

Nuclear fission occurs when a neutron collides with a nucleus of a large atom such as Uranium and is absorbed into it causing the nucleus to become unstable and thus split into two smaller more stable atoms with the release of more neutrons and a considerable amount of energy. Nuclear fission can occur naturally with the spontaneous decay of radioactive material or it can be initiated by bombarding the fuel consisting of fissionable atoms with neutrons. Neutrons, which are electrically neutral, can penetrate relatively unhampered into the atomic nucleus and are used as the bullets to initiate the fission rather than protons because, with a positive charge, the protons would be strongly repelled by the positively charged nucleus. See Coulomb Barrier below.

Physiological Effects of Nuclear Radiation

The term Nuclear Radiation normally refers to radiation with sufficient energy to cause ionisation of the materials on which it impinges.

The Cause

High-energy alpha (α), beta (β) and gamma (γ) radiation can transfer their energy upon interaction with other matter, knocking out electrons from neutral atoms or molecules on which they may impinge, leaving electron-deficient atoms or molecules called ‘positive ions’ and free electrons in a process known as ionisation. This ionisation can be measured by counting the number of ions formed using devices such as Geiger counters.

Alpha and beta rays are relatively harmless unless emitted inside the human body, but gamma rays cause damage similar to, but more serious than, X rays such as burns and cancerous mutations.

Very high levels of radiation may not just strip electrons from their atoms, if high enough, it can cause disintegration of the atomic nucleus creating radioactive isotopes or in extreme cases causing the nucleus to split into smaller particles (nuclear disintegration or fission).

Neutron radiation can induce non-radioactive atoms, including the body tissues, to become radioactive, which makes it one of the most dangerous radiations. This capability however also has practical applications in manufacturing isotopes for use in nuclear medicine.

See more about RF radiation damage and X-rays.

The Exposure

The exposure to ionising radiation is measured in terms of the amount of energy imparted by the radiation to the material through which it is passing and is known as the radiation dose, expressed in ‘Gray’ (Gy) after the British medical physicist. One Gray corresponds to the deposition of 1 Joule of energy in 1 kg of the exposed material.

The Effect

When nuclear radiation strikes complex biological molecules, such as proteins or nucleic acids, it may fracture the molecules and prevent their proper functioning. This can result in rupturing the cell membranes, loss of cell vitality, decreased enzyme activity, initiation of cancer, and genetic mutations. Rupturing of the cells causes them to lose their contents and die and ultimately the functions associated with the cells cease. Death occurs because of the direct loss of vital organs or because of secondary infections resulting from the breakdown of the immune system. The effects are cumulative and depend on the type of radiation and the dose received.

The magnitude of the effect depends on the intensity of the radiation, the distance from the source, the presence of absorbent materials in the intervening space (including air) and the duration of the exposure. Radiation workers wear badges made of photographic film which indicate the exposure to radiation.

The actual biological damage caused by the radiation depends on its physiological effect and is measured in Sieverts (Sv) after the Swedish medical physicist. Sieverts are related to Gray by a so called "quality factor" (Q) representing their potential for doing damage. A more appropriate name for the weighting factor would perhaps have been the "damage factor".

The Gray is the dose, the Sievert is the corresponding biological risk.

Radiation Dose Safety Limit

The Sievert is a relatively large unit with an exposure of 1 Sievert increasing the risk of cancer by 5%, while an exposure of 10 Sieverts can be fatal within days. Typical exposure levels are much lower and are measured in millisieverts (mSv).

The average exposure in the United States, from natural sources of radiation, mostly cosmic radiation and radon gas released from the earth's crust, is 3 mSv (300 millirems) per year at sea level and slightly higher at higher elevations. Similarly the average yearly background radiation in the UK is 2 mSv.

The current federal occupational limit of exposure per year for an adult worker "as low as reasonably achievable (ALARA); however, not to exceed 20 mSv (2,000 millirems)above the 3 mSv of natural sources of radiation and any medical radiation. For workers using radiation the limit is slightly higher at 50 mSV above background . Readings typically are taken monthly. A federal advisory committee recommends that the lifetime exposure be limited to a person's age multiplied by 10 mSv (example: for a 65-year-old person, 650 mSv).

Radiation Dose from Medical Radiological Tests

Typical exposures from medical investigations using X-rays are as follows:

Continue to Nuclear Fusion Theory Continue to an overview of Fusion Reactors About the author, Barrie Lawson: Barrie graduated from Birmingham University with a degree in Electrical and Electronic Engineering in 1964. Since then he as has worked at Director level in many branches of the electronics industry including military electronics, telecommunications, computers, automotive and consumer electronics. During the last 10 years he has been involved in the battery business, originally as Chairman of MPower Batteries, a custom battery pack making company in Scotland which he helped to found and later in China where he set up a similar business. He is currently Chairman of CHE EVC, another battery startup company pioneering some interesting new technologies. In his spare time he writes and maintains the Electropaedia web site, a comprehensive knowledge base about batteries and energy sources.